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Abstract

Deep learning has revolutionized the way we build algorithms for analyzing, inferring,

and modeling high-dimensional data. Long-standing challenges in fields such as image

recognition, natural language understanding, and game playing have seen unprecedented

success with deep learning models, often surpassing human-level performance. However,

despite these advancements, generative models based on deep learning still faced limita-

tions, particularly in their ability to efficiently model complex distributions with high-

quality, diverse samples and likelihood estimation.

This dissertation focuses on continuous normalizing flows (CNFs), a powerful class

of generative models, parameterized by a velocity field, flowing point samples to reshape

densities. CNFs allow for likelihood computation, similar to autoregressive models, while

offering a more scalable and efficient sampling procedure. We address the key challenge in

naive maximum likelihood training of CNFs, which requires simulating an ordinary differ-

ential equation and differentiating through it, proposing novel simulation-free methods.

In the first part, we develop two new simulation-free approaches for efficient CNF

training: (i) probability path matching, which optimizes the CNF to match a prescribed

probability path connecting source and target distributions, and (ii) flow matching, which

also matches prescribed probability paths, but, inspired by diffusion models, does so by

reducing the generative modeling problem to a regression one onto conditional velocities

that generate single data examples. We show that the flow matching framework scales up

to high-dimensional data achieving state of the performance for image generation tasks.

In the second part, we introduce generalizations of flow matching for general joint

distributions, extending the flow matching framework beyond generative modeling with

applications to optimal transport which also enables improved sampling speed for genera-

tive tasks. Finally, we explore the dynamics of optimizing through the generation process,

developing an approach for controlled generation with applications to inverse problems

and conditional generation on domains such as images, audio, and molecular data.

Through these contributions, we enhanced the scalability, efficiency, and versatility of

CNFs, expanding their potential applications in both generative modeling and broader

fields involving complex data distributions.
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Chapter 1

Introduction

Generative modeling views data from a probabilistic perspective, aiming to model the

distribution of observed samples. While originally motivated by the goal of estimating

the probability density of an empirically observed distribution, modern, deep generative

models have grown to be much more. Deep generative models have unlocked an amazing

ability to generate novel samples from a learned distribution, estimate the probability

density, and are also utilized as plug-and-play priors for solving inverse problems and for

controlled generation. In this study, we take a journey intertwined with the developments

that led to the success of generative artificial intelligence (GenAI) models.

We focus on a family of generative models called continuous normalizing flows (CNFs).

CNFs build a generative model by parameterizing a continuous time generative process

via its velocity field. Intuitively, the velocity field defines how particles sampled from a

source distribution (typically one that is easy to sample from) move in time, moving mass

so the reshaped probability density matches the target distribution. In contrast to latent

deep generative models such as generative adversarial networks (GANs) and variational

auto-encoders (VAEs), CNFs define a diffeomorphism between probability densities, which

allow inverting the generation process and they allow computing model likelihoods. Sim-

ilar to other likelihood-based generative methods such as Normalizing Flows (NFs) and

Auto-regressive models (ARMs), CNFs are trained by direct maximum likelihood opti-

mization. In this space, CNFs are appealing since they lift the architectural restrictions

inherent to the design of NFs to ensure invertibility and cheap Jacobian computation, and

compared to ARMs, they offer faster sampling procedures independent of data dimen-

sionality. However, the common paradigm of maximum likelihood training made CNFs

computationally heavy to train since it required backpropagating through the simulation

of the ordinary differential equation (ODE) that defines the generation process.

The goal of this study is to introduce simulation-free training methods for CNFs as

well as devise extensions and generalizations enabled by these new methods. In what

follows, we describe the main results of our research addressing the challenges presented

above and further explorations of CNFs.

1



CHAPTER 1. INTRODUCTION 2

1.1 Thesis Outline

This dissertation includes four papers to which I have contributed. In three of the four,

I was a lead (or co-lead) author contributing to all aspects of the work, from theoretical

to experimental. A full list of publications can be found in the Summary of Publications

section. Below, we lay the outline of this dissertation.

The first part of the thesis introduces simulation-free methods for the training of CNFs:

• Chapter 3 is based on [Ben+22] and introduces Probability Path Matching, a first of

its kind simulation-free training approach for CNFs that can match general proba-

bility paths.

– In §3.3.1 we introduce the Logarithmic Mass Conservation formula, a PDE that

couples between a flow model’s velocity field and its generated log-probability

path.

– In §3.3.2, we derive the Probability Path Divergence, which serves as a train-

ing objective for training CNFs without having to simulate nor backpropagate

through the solution of the ODE, by matching a target probability path.

– In §3.3.3 we show how to build target probability paths. We are the first to

introduce training of CNFs to match general probability paths between source

and target distributions which are not tied to a stochastic process defined by a

stochastic differential equation.

– In §3.5 we experimentally demonstrate the capability of the proposed approach

on higher dimensional manifolds compared to previous works, achieving state

of the art results.

• Chapter 4 is based on [Lip+23] and introduces Flow Matching, the first simulation-

free training approach for CNFs that has unbiased gradients, as opposed to Proba-

bility Path Matching proposed in §3, and that scales to high dimensional data.

– §4.3 introduces the basic idea of flow matching – regressing a CNF ’s velocity

field to a predefined velocity field generating a target probability path.

– In §4.3.1-§4.3.2 we propose an efficient way to match flows by regressing to

conditional velocities generating conditional probability paths.

– In §4.4 we construct target probability paths, showing that flow matching sub-

sumes diffusion paths and we advocate a novel probability path choice inspired

by optimal transport theory that results in a model that is easier to sample

from, i.e.require fewer function evaluations to simulate the ODE.

– In §4.6 we empirically show the effectiveness of the flow matching generative

framework, achieving state of the art results on large scale image datasets.
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In the subsequent two papers, we improve training and inference from flow matching

models and propose a novel framework for controlled generation:

• Chapter 5 is based on [Poo+23] and introduces joint andMultisample Flow Matching,

and extension to the flow matching framework for training flow models with non-

trivial couplings between source and target distributions.

– In §5.3 we introduce joint flow matching, generalizing independent couplings

of source and target samples for a generally given joint, e.g.couples of low-

resolution images and high-resolution images.

– In §5.4 We propose the multi-sample framework for the construction of non-

trivial joint distributions based on minibatch couplings.

– In particular, in §5.4.2, we propose batch optimal transport multi-sample and

show that in the limit of infinite batch size, the learned map will approach the

optimal transport map.

– Lastly, in §5.6, we demonstrate the benefit of multi-sample batch optimal trans-

port for faster inference from flow matching models.

• Chapter 6 is based on [Ben+24] and introduces D-Flow. An optimization based

controlled generation framework from flow and diffusion models.

– In §6.2, we propose a simple optimization scheme for controlled generation from

flow and diffusion models via differentiation through the generation process.

– In §6.3, we provide a theoretical analysis of the proposed method, showing that

for Gaussian affine probability paths, the optimization of the initial point of

the ODE defined by the learned velocity field can be seen as projections on the

data manifold along time.

– Finally, in §6.5, we evaluate our method for linear and non-linear inverse prob-

lems on images and audio. We also use our method for conditional molecule

generation, achieving state of the art performance across all applications and

modalities.



Chapter 2

Preliminaries and Background

This chapter lays down the foundations for the research questions we answer in this dis-

sertation. We begin by setting up the problem of generative modeling from a probabilistic

point of view, then introduce the landscape of dominant approaches tackling this prob-

lem and discuss the challenges and shortcomings of each approach. At last, we focus our

discussion on Continuous Normalizing Flows, the prime generative modeling paradigm

researched in this study. We do not attempt to cover all necessary knowledge and assume

the reader is familiar with key concepts in machine and deep learning (e.g., [GBC16]).

2.1 Generative Modeling

2.1.1 Problem Setup

Consider a finite observed dataset D ⊆ Rd, of size |D| = N , where d is the data dimension,

composed of independent, identically distributed (i.i.d) samples originating from an un-

known data distribution x
i.i.d.∼ pdata (e.g., natural images). The ultimate goal of generative

modeling is to build a model that allows efficient sampling from the model distribution,

pmodel, given access only to D, such that it approximates the data distribution:

pmodel ≈ pdata. (2.1)

Toward this goal, the general scheme for learning such a model is to represent it by a

function of free parameters, θ ∈ Rp, and seek for the optimal ones satisfying equation 2.1.

Formally phrased as an optimization problem:

min
θ

D(pdata∥pθ) , (2.2)

where D (·∥·) is a function that measures the difference between distributions and pθ is

the underlying model distribution, that is pθ := pmodel. Though this may seem abstract

at this point, we will put all the pieces together and elaborate on possible optimization

objectives, D (·∥·), and common successful approaches for modeling pθ, either explicitly or

implicitly that follow the scheme of problem 2.2.

4
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2.1.2 Comparing Distributions: Metrics and Divergences

We framed the generative modeling problem as an optimization problem with the goal of

minimizing the discrepancy between the model distribution and the data distribution. The

literature on comparing statistical objects, particularly probability densities, is extensive

and provides a range of metrics and divergences. We will review three prevalent notions for

comparing probability distributions: integral probability metrics, Wasserstein distances,

and f -divergences.

Integral probability metrics (IPMs). Consider probability density functions p and

q over a set Ω. This family of metrics [Zol84; Mül97] uses the separation power of a class

of real-valued functions on Ω, denoted as F , to measure the difference between p and q.

The metric is defined as follows:

DF (p, q) = sup
f∈F
|Ex∼pf(x)− Ey∼qf(y)| . (2.3)

We note that different function classes, F , define different metrics and for certain choices,

DF (·, ·) will actually be a pseudo-metric, violating the metric axiom that DF (p, q) = 0

iff p = q. IPMs have been greatly studied as a theoretical tool in probability theory and

statistics, but from a practical standpoint, efficient estimation of these metrics remains a

challenge [Sri+12]. Nevertheless, there are a few instances, overlapping with the next two

notions we will discuss, that are more widely known and used in practice.

Wasserstein distance. To define this family of metrics we will require that the domain

over which p and q are defined is a metric space (Ω, d), where again Ω is a set and d is a

metric on Ω. The Wasserstein ℓ-distance is defined as:

Wℓ(p, q) = inf
π∈Π(p,q)

[
E(x,y)∼πd (x, y)

ℓ
]1/ℓ

, (2.4)

where Π(p, q) is the set of all joint probability densities on Ω× Ω with marginals p and q

with respect to the second and first factors respectively, that is:∫
Ω
π(x, y)dy = p(x) ,

∫
Ω
π(x, y)dx = q(x). (2.5)

A popular instance of the Wasserstein family is the W1 Wasserstein distance which by

the Kantorovich and Rubinstein duality theorem [KR58] is equivalent to an IPM, DF (·, ·),
with F = {f | continuous f : Ω→ R,Lip(f) ≤ 1}, an equivalence that was used to improve

generative adversarial networks (GANs) [ACB17]. The W1 metric also shares connections

to the optimal transport (OT) problem (see §5) and is equivalent to Kantorovich’s formu-

lation of the OT problem [Vil08] with the distance cost. Another well-known instance akin

to OT is the W2 Wasserstein distance, which has a dual dynamic representation [BB00].

We will revisit and elaborate on these connections to OT in Chapter 5, where we use

OT-inspired techniques to improve generative modeling methods.
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f-divergences. The f -divergences [Rén61; AS66; Csi67] of two probability densities

p, q over Ω are defined by:

Df (p ∥ q) =
∫
Ω
f

(
p(x)

q(x)

)
q(x)dx, (2.6)

where f : R≥0 → R is a strictly convex function satisfying f(1) = 0. f -divergences satisfy

the standard statistical divergence properties: Df (p ∥ q) ≥ 0, and Df (p ∥ q) = 0 iff p ≡ q.

f -divergences generalize standard divergences such as KL (with the choice f(r) = r log r),

reverse KL (f(r) = − log r), total variation distance (f(r) = |r − 1|), and α-divergences
(f(r) = 1− rα with α ̸= 1, 0).

KL Divergence and Maximum Likelihood Estimation

The last part of this section is dedicated to one of the most essential derivations in the

literature of generative modeling, showing the equivalence of KL-divergence optimization

to maximum likelihood estimation.

The KL-divergence, is an f -divergence with f(r) = r log r:

DKL(p ∥ q) =
∫
Ω
log

(
p(x)

q(x)

)
p(x)dx = Ex∼p

[
log

(
p(x)

q(x)

)]
. (2.7)

When considering the generative modeling problem setup as in 2.2 with the KL-divergence,

pdata takes the role of p and the model distribution, pθ, takes the role of q in equation 2.7:

DKL(pdata ∥ pθ) = Ex∼pdata [log (pdata(x))]− Ex∼pdata [log (pθ(x))] . (2.8)

Note that the first term in equation 2.8 does not depend on the model parameters, θ, and

hence problem 2.2 with KL-divergence amounts to the maximum likelihood estimation

approach:

max
θ

Ex∼pdata [log (pθ(x))] . (2.9)

In practice, since we assume access to a finite set of samples from pdata, the expectation

above is estimated empirically,

max
θ

1

N

N∑
i=1

[log (pθ(xi))] , (2.10)

where xi ∈ D. The maximum likelihood estimator holds desirable statistical properties

such as consistency and efficiency as sample size increases to infinity, that is N → ∞,

making it a go-to practice in statistics and is a core principle in the design of many

popular generative modeling approaches, which we will now review.
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2.2 Common Methodologies

In this section, we survey central methodologies in the landscape of deep generative models.

The aim of this section is to give the reader a brief introduction to various approaches and

ground our motivation to research and extend the use of continuous normalizing flows as

our generative paradigm of choice in this study.

2.2.1 Likelihood Based Models

Recall that we framed the generative modeling problem as an optimization problem aim-

ing to bring the model distribution close to the observed data distribution (see §2.1.1).
In pursuit of this objective, models that directly represent the likelihood have been an

appealing approach for designing generative models. Continuous normalizing flows belong

to this class as well, yet we will discuss them with greater detail in §2.3.

Auto-Regressive Models

Auto-Regressive models (ARMs) historically date back to belief networks or Bayesian

networks [Pea88; Nea92]. The key idea is to factorize the probability of a data point

x ∈ Rd using the chain rule of probability over the dimensions, that is:

pθ(x) =
d∏

i=1

pθ(xi|x<i), (2.11)

where xi is the i-th coordinate of x and x<i denotes the (i−1)-dimensional vector holding

the elements of x up to the (i − 1) coordinate, and abusing notation a bit, we define

xi<1 to be null. The product representation of one-dimensional distributions can be eas-

ily transformed to compute the log-likelihood as a sum of one-dimensional log densities,

facilitating learning with the maximum likelihood principle derived in §2.1.2:

max
θ

1

N

N∑
j=1

d∑
i=1

log pθ(x
(j)
i |x

(j)
<i ), (2.12)

where x(j) ∈ D.

Modeling log pθ(xi|x<i) with a neural network is, however, not trivial since density

functions need to integrate to 1. For continuous distributions, one can either restrict the

family of distributions represented by the model [TB15] or discretize the space [VKK16],

which may not always be possible. Once a model is trained, generating samples with

ARMs is done sequentially, constructing the sample coordinate by coordinate by sampling

from pθ(xi|x<i).

ARMs have found great success in modeling sequential discrete data, in particular in

language modeling [Rad+18], and are the foundational generative modeling framework

driving the large language models (LLMs) revolution. Nevertheless, when the data does

not have an inherent sequential structure, such as images, ARMs are a less intuitive choice.
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Normalizing Flows

Normalizing Flows (NFs) transform continuous probability distributions by constructing

a diffeomorphic map (smooth bijection with smooth inverse), called a flow, ψθ : Rd → Rd,

mapping samples from a source distribution z ∼ p to the model distribution ψθ(z) ∼ pθ,

which can be computed using the change of variables formula:

pθ(x) = p(ψ−1
θ (x))

∣∣detDxψ
−1
θ (x)

∣∣ , (2.13)

where Dxf denotes the Jacobian of a function f w.r.t x.

Early instantiations of such an approach appeared in [TV10; TT13]. Assuming we can

easily compute the inverse and Jacobian of the flow, we can apply once again the maximum

likelihood principle in our optimization objective by taking the log of equation 2.13:

max
θ

1

N

N∑
i=1

log p(ψ−1
θ (xi)) + log

∣∣detDxψ
−1
θ (xi)

∣∣ , (2.14)

where xi ∈ D. Sampling from NFs is cheap, compared to the sequential procedure required

in ARMs, producing a sample in a single evaluation of the learned flow ψθ(z) with z ∼ p.

In recent years, normalizing flows have been widely adopted in tasks like image gener-

ation and density estimation in scientific applications. Designing neural architectures that

allow tractable computations of equation 2.14 has been a central area of research, aim-

ing to achieve high expressivity with restricted architectures. Advances such as [RM15;

DSB17; KD18] have significantly improved the ability of normalizing flows to handle high-

dimensional data, nevertheless, NFs remained inferior in sample quality compared to the

two generative modeling approaches we will discuss next.

2.2.2 Latent Variable Models

A different class of generative models takes a different perspective focusing on modeling

the generative process. The key component is to introduce a latent variable z ∈ Rd′ , where

typically d′ < d, and learn a generator (deterministic or probabilistic), ψθ : Rd′ → Rd,

from latent space to data space. This approach is also related to a representation learning

and dimensionality reduction perspective following the hypothesis that high dimensional

data lies on a lower dimensional manifold.

Framing this in a probabilistic language, the generator ψθ is a sampler from the likeli-

hood pθ(x|z). Now, if one designs its latent variable model such that the prior p(z) is easy

to sample from, we achieve a computationally efficient generative process for sampling

from the marginal likelihood (or the evidence), pθ(x), by first sampling z ∼ p and then

computing x = ψθ(z), where

pθ(x) =

∫
pθ(x|z)p(z)dz. (2.15)

We remain with the question, how do we train such generator ψθ?



CHAPTER 2. PRELIMINARIES AND BACKGROUND 9

Variational Auto-Encoders

Variational Auto-Encoders (VAEs) [KW14] extend traditional autoencoders by introduc-

ing a probabilistic approach to latent space representation. Unlike standard autoencoders,

which map data to a fixed latent space, VAEs learn to encode data into a probability dis-

tribution, typically Gaussian, from which latent variables are sampled.

The introductory part of this section sets out to learn a function, ψθ(z), that enables

sampling from the likelihood pθ(x|z). Using Bayes rule, this model defines the posterior:

pθ(z|x) =
pθ(x|z)p(z)
pθ(x)

(2.16)

which is intractable. In VAEs, we define another function Eϕ : Rd → Rd′ , with parameters

ϕ, that maps data to latent space, and is used to model the approximate posterior qϕ(z|x).
In analogy to autoencoders, Eϕ is the encoder, and ψθ is the decoder.

[KW14] then derive the evidence lower bound (ELBO) in terms of these models:

log pθ(x) = log

∫
pθ(x|z)p(z)dz = logEqϕ(z|x)

[
pθ(x|z)p(z)
qϕ(z|x)

]
Jensen
≥ Eqϕ(z|x)

[
log

pθ(x|z)p(z)
qϕ(z|x)

]
= Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z)),

(2.17)

and train the model by maximizing the ELBO, indirectly maximizing the likelihood:

max
θ,ϕ

1

N

N∑
i=1

Eqϕ(z|xi) [log pθ(xi|z)]−DKL(qϕ(z|xi) ∥ p(z)). (2.18)

In practice, the first term is approximated, assuming that pθ(x|z) is a Gaussian, re-

sulting in a reconstruction-like type of loss while the second term is handled by a design

trick, known as the parameterization trick, where the encoder function outputs the mean

and variance of a Gaussian distribution, and together with a choice of Gaussian prior

p(z), we end up with a simple KL term. The training process optimizes a loss function

that combines reconstruction accuracy with a regularization term (the Kullback-Leibler

divergence) that encourages the latent space to conform to a known prior.

VAEs are widely used in tasks such as data generation, dimensionality reduction, and

semi-supervised learning, as they offer a structured way of generating new, diverse data

samples by manipulating the latent space. VAEs provide a robust framework for learning

meaningful representations of complex data distributions, yet their generation quality is

behind leading models such as generative adversarial networks, discussed below.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs), proposed by [Goo+14], cast the generative

modeling problem as a two-player adversarial game, where the first player (the generator)

tries to perfect in generating realistic samples from the target data distribution and the

second player (the discriminator) aims to distinguish between generated and real samples.

Training a GAN involves two neural networks: (i) the generator, ψθ : Rd′ → Rd, map-

ping latent variables z ∼ p to data space, modeling sampling from pθ(x|z); and (ii) the

discriminator, hϕ : Rd → R, outputting a score of realness for given samples. The adver-

sarial training of these two networks can be put into the following minimax optimization:

min
θ

max
ϕ

Ex∼pdata [log hϕ(x)]− Ez∼p [log hϕ(ψθ(z))] . (2.19)

Theoretically, when the models have sufficient capacity and the networks are trained in

an alternating manner, where at each iteration the discriminator reaches optimum, the

sampling procedure of z ∼ p and applying ψθ(z) is shown to converge to that of sampling

from the data distribution.

In practice, however, optimizing the above game turned out to be very challenging and

unstable. Over the years, various techniques for stabilizing and improving the training

of GANs have been proposed [Sal+16; AB17; ACB17; Gul+17] achieving exceptional

new abilities in generating realistic samples. A line of works by Karras et al. [KLA19;

Kar+20; Kar+21] developed new architectures and designs that fully exploit the latent

space of GANs and facilitate unsupervised representation learning and separation of high-

level features.

GANs have served as the dominating deep generative paradigm for most data types,

except perhaps for language modeling, until the re-introduction of diffusion models, dis-

cussed next in §2.2.3, around the year 2020. As a very efficient class of generative models,

requiring a single network evaluation for sample generation compared to diffusion and

flows that require multiple steps in generation, some recent works [Kan+23] question their

decline by developing techniques to scale GANs to large scale text-2-image generation

tasks.

2.2.3 Time-Dependent Generative Models

Time-dependent generative models view the generative process as a dynamic system se-

quentially transforming distributions along an auxiliary dimension (discrete or continu-

ous), typically attributed to time, t (but could also be attached to a noise level σ, as

in [SE19]). Under this definition, one can find Diffusion-based generative models, Score-

based generative models, and CNFs. In this section, we will adopt the unifying perspective

presented in [Son+21b] for describing diffusion and score-based models, and in the next

section, we will provide a more delicate treatment of CNFs. Diffusion models for genera-

tive modeling were first introduced in [Soh+15], adopting principles from non-equilibrium

physics, applying a forward diffusion process, turning data into Gaussian noise in an
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iterative process, and learning the reverse process, serving as a generative model. This ap-

proach, however, did not gain the research community’s attention until [HJA20] revisited

the proposed method and suggested a simpler optimization objective achieving incredible

results on image generation.

In concurrence, another rising generative modeling approach, called Score-matching,

was introduced by [SE19]. Score matching proposes building a generative model by learn-

ing to estimate the score function of the data distribution, ∇ log pdata(x). Nonetheless,

naively learning ∇ log pdata(x), one runs into various challenges, such as inaccurate score

estimation in areas of low density as well as slow mixing of Langevin dynamics or any

other method for sampling from un-normalized densities. These issues become even more

pronounced as data dimensionality grows. To overcome these challenges, [SE19] proposed

to learn a sequence of score functions of the data distributions convolved with a noising

kernel (e.g., Gaussian), with increasing noise levels.

[Son+21b] unified both approaches under a stochastic process perspective. The forward

diffusion process of [HJA20], known as Variance Preserving (VP), and the noising process

proposed in [SE19], known as Variance Exploding (VE), were shown to be instances of

forward processes described by a Stochastic Differential Equation (SDE) of the standard

form

dxt = ft(x)dt+ gt(x)dw, (2.20)

with time parameter t ∈ [0, T ], starting from data at t = 0, drift ft, diffusion coefficient

gt, and dw is the Wiener process. The solution xt to the SDE is a stochastic process, i.e.,

a continuous time-dependent random variable, the probability density of which, pt(xt), is

characterized by the Fokker-Planck equation:

∂tpt(x) = −div(ft(x)pt(x)) +
g2t (x)

2
∆pt(x) (2.21)

where ∆ represents the Laplace operator (in x), namely div∇, where ∇ is the gradient

operator (also in x). At T → ∞, pT reaches the stationary distribution of the forward

process.

The generative process is defined by the reverse process, and is also a diffusion process

depending on the intermediate score functions [And82]:

dxt = [ft(x)− g2t (x)∇ log pt(x)]dt+ gt(x)dw̄, (2.22)

where dw̄ is a Wiener process and time flows backwards from T to 0. It is then apparent

that if one can estimate the score function, a generative model is at hand by simulating

equation 2.22 with initial condition xT ∼ pT .

How can we learn the score efficiently then? Both [HJA20; SE19] proposed simulation-

free regression objectives for learning the score (or an affine re-parameterization of it

[HJA20]). While different points of view led to these objectives, they have been shown to

be equivalent up to a time-dependent weighting. We will now describe the derivation from

[SE19], which aligns with our perspective on CNFs and our proposed objective in §4.
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We parameterize a time-dependent score function by a neural network st(x; θ) : [0, T ]×
Rd → Rd with parameters θ ∈ Rp. [SE19] used the useful result from [HD05], on the

optimal score solving the following optimization problem:

min
θ

Et

[
w(t)Ex0∼pdata,xt∼pt(x|x0) ∥st(xt; θ)−∇ log pt(xt|x0)∥2

]
, (2.23)

which is st(x; θ
∗) = ∇ log pt(x) where pt(x) =

∫
pt(x|x0)pdata(x0)dx0. A neat property

of diffusion processes with affine drifts, ft, is that pt(x|x0) is a Gaussian with closed

form mean and covariance, enabling simulation-free computation of the objective in equa-

tion 2.23. In the following chapters, we will revisit connections between CNFs and score

and diffusion-based models. A noteworthy work, unifying simulation-free methods for

diffusion and flows, was recently published by [ABV23].

2.3 Continuous Normalizing Flows

In this section, we introduce continuous normalizing flows (CNFs), or with a slight abuse

of naming just flows. CNFs are a class of generative models that picture the generative

modeling problem as a continuous time probability mass transport parameterized by a

time-dependent velocity field. While they can also be classified under §2.2.1 and §2.2.3,
we dedicate a deeper discussion on their foundations as they are the main generative

paradigm this thesis builds upon.

In CNFs, a velocity field ,vt, parameterizes a time-dependent diffeomorphic map, called

a flow, ψ : [0, 1]× Rd → Rd, defined via the ordinary differential equation (ODE):

d

dt
ψt(x) = vt(ψt(x)) (2.24)

ψ0(x) = x. (2.25)

[Che+18] suggested modeling the velocity field vt with a neural network, vt(x; θ), where

θ ∈ Rp are its learnable parameters, which in turn leads to a deep parametric model of

the flow ψt. A flow is used to reshape a simple prior density p0 := p (e.g., pure noise) to

a more complicated one, p1, via the push-forward equation

pt = [ψt]∗p0, (2.26)

where the push-forward (or change of variables, see equation 2.13) operator ∗ is defined

by

[ψt]∗p0(x) = p0(ψ
−1
t (x))

∣∣detDxψ
−1
t (x)

∣∣ . (2.27)
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2.3.1 The Continuity Equation

In physics, equation 2.24 is known as a Lagrangian description, where the change in density

is implied by particle movement along trajectories, ψt(x), obtained by integrating over the

velocity field. The continuity equation presents a dual representation (see [Vil08]), called

the Eulerian description, expressing the physical world via densities:

∂tpt(x) + div(pt(x)vt(x)) = 0, (2.28)

where the divergence operator, div, is defined with respect to the spatial variable x =

(x1, . . . , xd), i.e., div =
∑d

i=1
∂
∂xi , which is the trace of the Jacobian. The continuity

equation is a fundamental principle in physics, particularly in fluid dynamics, and it

describes the conservation of a physical quantity, which in our case is probability mass.

We will use this principle to design a new CNF training approach in §3 and as a tool for

proofs and derivations.

2.3.2 Likelihood Computation

Computing the log-likelihood a CNF generates at time t can be done by solving a system

of ODEs. The instantaneous change of variables [Che+18] connects between the velocity

field vt(x) and the log-likelihood:

d

dt
log pt(ψt(x)) + div(vt(ψt(x)) = 0. (2.29)

Integrating t ∈ [0, s] gives:

log ps(ψs(x)) = log p0(ψ0(x))−
∫ s

0
div(vt(ψt(x)))dt (2.30)

Assuming we choose p0 such that we can compute log p0(x), e.g., Gaussian, the log prob-

ability at (s, x) can be computed together with the flow trajectory by solving the ODE

system backward in time:

d

dt

x(t)
f(t)

 =

 vt(x(t))

div(vt(x(t)))

 , (2.31)

given initial conditions x(s)
f(s)

 =

x
0

 , (2.32)

and then plugging:

log ps(x) = log p0(x(0)) + f(0). (2.33)
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2.3.3 Maximum Likelihood Training

We have shown how one can compute the likelihood of a CNF model by solving a system of

ODEs, and can, therefore, once again adopt the maximum likelihood principle in designing

our objective:

max
θ

1

N

N∑
i=1

[log (p1(xi))] , (2.34)

where xi ∈ D and log p1 is computed as in equation 2.33.

Hutchinson Trace Estimator. Optimizing equation 2.34 in high dimensions becomes

computationally prohibitive as it requires evaluation of the divergence operator of high

dimensional vector fields, namely taking the trace of the Jacobian, which scales quadrat-

ically with the dimension. [Gra+19] proposed overcoming this computational hurdle by

turning to the Hutchinson trace estimator [Hut90], obtaining an unbiased estimator of the

div operator using vector-Jacobian products which roughly scale linearly with dimension.

For a matrix, Q ∈ Rd×d, it can be shown that

Tr (Q) = E
[
ϵTQϵ

]
(2.35)

where ϵ is a random variable with E[ϵ] = 0 and covariance Cov(ϵ) = I. Common choices for

pϵ are Gaussian or Rademacher distributions. The Hutchinson trace estimator is realized

by the Monte Carlo estimate of equation 2.35.

While significantly reducing the computational complexity required for evaluating the

likelihood of a CNF, there is another axis in which the complexity can change – the amount

of velocity field evaluations required for solving equation 2.31 with low discretization error.

ODE Solvers. In practice, solving and simulating ODEs on a computer amount to

numerically evaluating integrals. For simplicity, let us consider the sampling procedure

from a CNF, solving equation 2.24, namely

ψ1(x0) = x0 +

∫ 1

0
vt(ψt(x0))dt. (2.36)

Figure 2.1: Euler Method.

The simplest numerical solver, approximating equation 2.36

is known as the Euler Method discretizing the solu-

tion time interval to equally distant time stamps (t0 =

0, t1, . . . , ti, . . . , tN = 1) and iteratively updating xt:

xti+1 = xti +∆tvti(xti) (2.37)

where ∆t = 1/N is the discretization step. The Euler method

can be derived from a first-order Taylor expansion of ψt(x0)

around t+∆t, and its local error is linear in ∆t, that is o(∆t). Improving the dependency of
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the accumulated error in the size of the discretization step can be achieved by considering

higher-order solvers. Furthermore, to save computation, one can adopt adaptive step size

methods.

Nonetheless, for the likelihood estimation in equation 2.31 to produce meaningful gra-

dients when backpropagating through the objective in equation 2.34 one needs to simulate

the ODE with very low errors, and as training progresses it has been observed [Fin+20b]

that the trajectories defined by the learned velocity become more complex and hence

require a larger number of steps to simulate.

2.3.4 Degrees of Freedom

The above-mentioned issues with simulation-based training of CNFs have limited their

applicability to large scales, e.g., images in a resolution higher than 32× 32. In this last

section of our introductory chapter, I would like to shape a degrees of freedom perspective

on how CNFs are trained, a perspective that will accompany us in the next two chapters

in designing simulation-free CNF training methods.

Maximum likelihood training, as done in FFJORD [Gra+19], directly supervises only

the terminal log-likelihood, log p1, at time t = 1. There are, therefore, infinitely many in-

termediate pt probability paths that can transform the source distribution p to the optimal

p1. Furthermore, for a given probability path pt, there are infinitely many velocity fields

that generate it, by adding a divergence-free term to the velocity field, see equation 2.28.

This leads us to the question:

Can we reduce degrees of freedom to gain efficiency?

We will now discuss two strategies to do so: (i) regularization; and (ii) model restric-

tion.

Regularization. The observation that with naive maximum likelihood training the ve-

locity field becomes highly complex has led to several works that utilize optimal transport

inspired penalties to regularize continuous normalizing flows for easier simulation. As op-

timal transport aims at finding a minimal cost transformation between distributions, that

is, intuitively, point trajectories should not stray away when reshaping p into q. Indeed, in

its dynamic formulation, optimal transport seeks to minimize the 2-Wasserstein distance

between the source and target distribution:

W 2
2 (p, q) = min

pt,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 pt(x)dxdt. (2.38)

A physical interpretation of this objective is that one seeks to minimize the kinetic energy.

Various instances [Fin+20b; Onk+21b] used the above motivation to craft regularizing

terms for maximum likelihood training of CNFs. While improving training and inference

efficiency compared to FFJORD, these methods still lagged behind in both computational

overhead and sample quality.
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Table 2.1: Comparison of CNF training methods. FFJORD and RNODE maximize the log-
likelihood, while Moser Flow maximizes the direct likelihood, which is a clear numerical disad-
vantage in high dimensions. The last column states the degrees of freedom in minimizing each
method’s objective: the probability path, pt and/or velocity field, vt.

Method
Maximum Likelihood

Training
Simulation-Free

Training
Does not require

divergence
Degrees of
Freedom

FFJORD [Gra+19] log p1 ✗ ✗ pt , vt

RNODE [Fin+20b] log p1 ✗ ✗ pt , vt

Moser Flow [Roz+21] p1 ✓ ✗ vt

Probability Path Matching (§3) [Ben+22] ✗ ✓ ✗ vt

Flow Matching (§4) [Lip+23] ✗ ✓ ✓ ✗

Model Restriction. A recent work by [Roz+21], named Moser Flow, initiated a

paradigm shift in CNF learning towards simulation-free training, refraining from solving

an ODE during training. In Moser flow, the terminal likelihood p1 is defined as p1 =

p−div(u) where u is a time-independent vector field. Parameterizing the velocity field to be

vt(x) =
u
pt

where pt = (1−t)p+tq restricts the resulting probability path generated by the

learned CNF. This construction facilitated maximum likelihood training in a simulation-

free manner.

However, while improving the computational costs of training, this work met other

challenges in scaling CNFs to higher dimensions, such as intractable integrals computa-

tions and the use of the actual probability density rather than the log density. Table 2.1

summarizes the attributes of different CNF training paradigms, where the last two rows

represent the methods introduced in this thesis in the following chapters. The methods

we propose next are simulation-free, and they achieve this goal by introducing additional

supervision and moving away from maximum likelihood training.



Part I

Simulation-Free Training of

Continuous Normalizing Flows
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Chapter 3

Probability Path Matching

“I call it the law of the instrument, and it may be formulated as follows: Give

a small boy a hammer, and he will find that everything he encounters needs

pounding.”

— Abraham Kaplan, 1964

We concluded the previous chapter with a motivation to find approaches for restricting

the degrees of freedom in CNF training, with the hope that these will, in turn, trade off

with the need to simulate the ODE. In this chapter, we take our first step in this journey,

seeking a tool that is not a hammer (i.e., log-likelihood) in the CNF toolkit. Inspired by

score-based [SE19] and Diffusion models [HJA20], we conceptually change the way CNFs

are trained. Rather than maximizing the log-likelihood of the trained CNF at t = 1 on

data samples, we advocate matching it to an entire path of probability density functions

over t ∈ [0, 1] that connects between a source distribution p0 and an approximation of the

data distribution p1 ≈ pdata.

To this end, we introduce a novel family of divergences, probability path divergence

(PPD), between the probability density path generated by the CNF and a target proba-

bility density path and apply them to generative tasks on manifolds. PPD is formulated

using a logarithmic mass conservation formula, which is a linear first-order partial differ-

ential equation relating the log target probabilities and the CNF’s defining velocity field.

PPD has several key benefits over existing methods: it facilitates simulation-free train-

ing, readily applies to manifold data, scales to high dimensions, and is compatible with

a large family of target paths interpolating pure noise and data in finite time. Theoreti-

cally, PPD is shown to bound classical probability divergences. Empirically, we show that

CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sam-

ple quality on existing low-dimensional manifold benchmarks and are the first example of

a generative model to scale to moderately high dimensional manifolds.

Remark. This chapter describes the published work [Ben+22]. Originally, the pro-

posed method was given the acronym CNFM, standing for Continous Normalizing Flow

Matching ; however, in retrospect, in this dissertation, we rename it Probability Path

Matching (PPM).

18
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3.1 Motivation and Contributions

While early literature on generative modeling primarily focused on Euclidean data, the

need to model data in non-Euclidean spaces arises in many scientific fields. For instance,

occurrences of natural phenomena on earth can be modeled as a distribution on a sphere

[MN20], protein structure prediction requires angle predictions [Mar+08], and motion

and position of robots can be modeled with a product of Euclidean spaces and spheres.

Therefore, constructing manifold-aware models which provide a geometric inductive bias

might result in better and easier to train models with many potential applications.

Innate candidates for designing generative models on manifolds are Normalizing Flows

(NFs) [RM15] and CNFs [Che+18]. In these approaches, the generator, ψ, is a diffeo-

morphism, i.e., a smooth bijection with a smooth inverse. Therefore, the model density

can be expressed in terms of the prior density and the determinant of the Jacobian of

ψ, also known as the change of variable formula, which can be naturally adapted to the

manifold case. Recently, [Rez+20; Bos+20] devised NF models for sphere, tori and hy-

perbolic spaces. In a parallel line of works, [MN20; Lou+20; FF20] developed CNFs over

Riemannian manifolds.

In this chapter, we aim to alleviate some of the limitations of previous approaches by

introducing a novel family of Probability Path Divergences (PPD) used as an objective

for training CNFs enabling simulation-free training. The PPD family is a divergence

defined between an arbitrary target probability path (in time), p, and the probability

path generated by the CNF, q. To define the PPD we first introduce the Logarithmic

Mass Conservation (LMC) formula, a Partial Differential Equation (PDE), derived from

the well known continuity equation (e.g.compressible fluid dynamics), that couples log q

and the CNF’s velocity field. Then, the PPD is defined as the extent to which log p

and the CNF’s velocity field fail to satisfy the LMC. PPD has the following desirable

properties: (i) It is a proper divergence in the sense that it is non-negative, and zero iff

p ≡ q. (ii) It does not require evaluating q during training; it is defined solely in terms

of the parametric velocity field vθ, its first order derivatives, and the target path’s log

density, log p. This provides a speed up of 1 − 2 orders of magnitude in evaluating the

PPD and its derivatives, compared to, e.g., log likelihood. (iii) It is readily applicable

to manifolds and higher dimensional data. (iv) The PPD has a single parameter ℓ ≥ 1.

PPD with ℓ = 1 upper bounds the total-variation distance comparing p and q at arbitrary

times; PPD with 1 < ℓ < ∞ bounds their α-divergence; and PPD with ℓ = ∞ bounds

their reversed KL-divergence.

We call the minimization problem of the PPD between a target path p and a CNF

density q, Probability Path Matching (PPM) and use it to train CNFs. The main design

choice in PPM is the target path p. The requirements from p are: that it transforms

a simple prior (pure noise) to an approximation of the unknown data distribution; that

samples can be drawn from each pt, where pt represents the density at time t; and that we

can compute or approximate the derivatives of log pt. Any p satisfying these requirements

can be used to train a CNF in the Probability Path Matching framework. Other methods
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that try to fit the generated probability density path to a target one are Score and Diffusion

methods [SE19; HJA20; Son+21b]. However, these methods require target paths that are

generated by stochastic differential equations (SDEs), which limits their applicability on

manifolds.

We test our framework on several low and moderately high dimensional manifold data

including Euclidean spaces, spheres/hyperspheres, and product of spheres, demonstrat-

ing state-of-the-art sample quality and likelihoods in standard low-dimensional manifold

datasets. We demonstrate that PPM is considerably faster to optimize than state-of-the-

art CNF training algorithms, allowing the scale of CNF training to considerably larger

network architectures. Lastly, we demonstrate that PPM can train CNFs on moderately

high dimensional manifolds, in contrast to previous methods of generative modeling on

manifolds that mostly worked with low dimensional manifolds.

3.2 Notations

Let M be a d-dimensional smooth Riemannian manifold with a metric g and induced

volume form dV , the volume of M is |M| =
∫
M dVx. We consider strictly positive,

smooth probability densities over M, µ : M → R>0, satisfying
∫
M µ(x)dVx = 1. The

tangent space at point x ∈ M is denoted TxM; the tangent bundle, which is the disjoint

union of all tangent spaces ofM is denoted TM. The metric g defines an inner product

for pairs of vectors ξ, η ∈ TxM denoted by ⟨ξ, η⟩; a norm of a tangent vector is defined

by |ξ| = ⟨ξ, ξ⟩1/2. The Riemannian gradient of a smooth function f :M→ R is denoted

∇f(x) ∈ TxM. A time-dependent velocity field v(t, x) is a smooth function v : [0, 1]×M→
TM such that v(t, x) ∈ TxM for all t ∈ [0, 1] and x ∈ M. We denote the collection of

bounded time-dependent smooth velocity fields over M by X(M); by bounded we mean

that for each v ∈ X(M) there exists a constantM > 0 so that |v(t, x)| ≤M for all x ∈M,

t ∈ [0, 1]. The Riemannian divergence (w.r.t. x) of a smooth velocity field v ∈ X(M) is

denoted div(v). We denote by expx : TxM→M, and logx :M→ TxM the Riemannian

exponential and logarithmic maps. Note these should not be confused with the standard

exp, log that are written without subscript.

Remark All derivations in this chapter are done for a general Riemannian manifold

case. We note that the Euclidean case, whereM≡ Rd is a particular case and all results

trivially apply.

3.3 Matching Flows to Probability Paths

The central object we use in this chapter is the probability path. Let P(M) denote all

probability paths onM, that is, functions p : [0, 1]×M→ R>0, smooth in t and satisfying∫
M p(t, x)dVx = 1. For brevity, we will position the time argument, t, as a subscript

p(t, x) ≡ pt(x) and we will use the notation pt to denote the density at time t, namely,
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Figure 3.1: PPM on a manifold (sphere): the trained flow ψt is pushing noise x ∼ p0 to data ψt(x)
(top, from left t = 0 to right t = 1); and the reverse flow taking data x ∼ pdata to noise (bottom).

pt = p(t, ·). We are now ready to shift our attention to the entire path in time and view

CNFs as probability path generators.

Definition 1. We say that a flow ψt generates a probability density path q ∈ P(M) if for

all t ∈ [0, 1]

qt = ψt∗q0, or equivalently ψ∗
t qt = q0, (3.1)

With this perspective in mind, a natural question is: can one train a CNF to generate

a target probability path p ∈ P(M)? The answer, as the name of the chapter hints, is yes,

and perhaps the most interesting aspect of this different perspective is that the reduction

of degrees of freedom by supervising the entire probability path, and not just the final

density, q1, will enable simulation-free training. With this prospect, we will now show how

to match a CNF to a target probability path.

We approach probability path matching in a similar manner to how we built the

generative modeling optimization formulation in equation 2.2, except now we wish to

match a continuous evolution of density functions in time and not a single target density:

min
θ

D(p ∥ q) (3.2a)

s.t. qt = ψt∗p0, t ∈ [0, 1], (3.2b)

where D is a probability divergence between probability density paths. That is, for density

paths p, q ∈ P(M), D(p ∥ q) ≥ 0, and D(p ∥ q) = 0 iff pt ≡ qt for all t ∈ [0, 1]. To comply

with the generative modeling goal, a typical target path p, will satisfy the boundary

conditions: (i) for t = 0, p0 will be some simple source distribution, e.g., a Gaussian; and

(ii) for t = 1, p1 will approximate pdata, e.g., delta functions on data samples.

At first glance, solving the problem 3.2 may seem more challenging than problem 2.2

and adapting existing CNF approaches to optimize equation 3.2 would require evaluating

qt, which is provided only through solutions to an ODE (see also the discussion in Section

§3.4.1). Instead, we construct a novel divergence d, called the Probability Path Diver-

gence (PPD), that does not require sampling of q or enforcing equation 3.2b explicitly,

sidestepping the need for ODE simulation and backpropagation during training.

3.3.1 Logarithmic Mass Conservation

As a first step in constructing the PPD we derive a Partial Differential Equation (PDE)

involving the log density path log p and a velocity field v, such that it is satisfied iff the flow
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ψt, defined by v, generates p. We name this equation the Logarithmic Mass Conservation

(LMC) formula.

Theorem 1. Consider a flow ψt :M→M defined by a smooth, time-dependent velocity

field v ∈ X(M) as in equation 2.24, and a probability density path p ∈ P(M). Then p is

generated by ψt, i.e.,

pt = ψt∗p0, ∀t ∈ [0, 1] (3.3)

if and only if the LMC formula holds over [0, 1]×M:

∂t log pt + ⟨∇ log pt, v⟩+ div(v) = 0 (3.4)

The LMC formula can be proved with the aid of the mass conservation formula, also

known as the continuity equation and equivalent to equation 3.4 [Vil08]:

∂tpt + div(ptv) = 0, (3.5)

where div denotes the divergence operator over the manifoldM. We assumed p > 0 and

therefore dividing both sides by pt leads to

∂tpt
pt

+
⟨∇pt, v⟩+ ptdiv(v)

pt
= 0,

where we also used the fact that div(fv) = ⟨∇f, v⟩+fdiv(v). Finally noting that ∂t log pt =
∂tpt
pt

, and ∇x log pt = ∇xpt
pt

we get that equation 3.4 is equivalent to equation 3.5. See

Appendix A.1.1 for more details. The benefit of using the LMC formula over the standard

mass conservation formula is that it is formulated directly in terms of the log probability

log pt, which reduces numerical issues for high dimensions.

3.3.2 Probability Path Divergence

Plugging a fixed target path p ∈ P(M) in the LMC formula (equation 3.4) provides

a necessary and sufficient condition for v to generate p via a CNF. Motivated by this

observation, we define a family of probability path divergences (PPD), parameterized by

an integer ℓ ≥ 1, comparing p, q ∈ P(M) where qt = ψt∗p0:

Dℓ(p ∥ q)=Et,x∼pt

∣∣∣∂t log pt+⟨∇log pt, v⟩+div(v)
∣∣∣ℓ, (3.6)

and t is distributed over [0, 1], e.g., uniform t ∼ U [0, 1]. Dℓ(p ∥ q) ≥ 0 by construction, and

Theorem 1 implies that Dℓ(p ∥ q) = 0 iff pt ≡ qt for all t ∈ [0, 1].

Using this path divergence in the PPM problem (equation 3.2), we arrive at the fol-

lowing instantiation:

min
θ

Et,x∼pt

∣∣∣∂t log pt + ⟨∇ log pt, vθ⟩+ div(vθ)
∣∣∣ℓ (3.7)
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where vθ is the learnable velocity field, parameterized by a neural network, defining the

flow ψt generating qt. Importantly, evaluating the PPD Dℓ(p ∥ q) and its derivatives with

respect to θ does not require access to q and ψt and thus allows simulation-free training.

To further justify the PPD, we show that the PPD family bounds a family of standard

divergences of probability densities in the following theorem (proof in Appendix A.1.2):

Theorem 2. Consider paths p, q ∈ P(M) where q is generated by a flow ψt :M→M,

and q0 = p0. Then for all T ∈ [0, 1]

Dℓ(p ∥ q)
1
ℓ ≥ Df (pT ∥ qT ), (3.8)

where Dℓ(p ∥ q) is an f -divergence with:

f(r) =


|r − 1| ℓ = 1 (total variation)

ℓ
(
1− r

1
ℓ

)
1 < ℓ <∞ (α)

− log r ℓ =∞ (reverse KL).

Reverse KL

Total Variation

Alpha
Alpha

Figure 3.2: f instances,
see Theorem 2.

Theorem 2 shows that the PPD Dℓ bounds the respective f -

divergences of pT and qT for all times T ∈ [0, 1]. Figure 3.2

visualizes four instances of f corresponding to different choices of

ℓ. Note that with the exception of ℓ = 1, all f are differentiable

and have the same derivative at 1, which means they have similar

values and derivatives when evaluating the divergence of nearby

probability densities. As ℓ → ∞ we can see the f functions gets

close to the − log r limit.

Specifically, in the ℓ = ∞ case of Theorem 2, we mean that

the inequality equation 3.8 holds in the limit as ℓ→∞, or more precisely,

lim inf
ℓ→∞

Dℓ(p ∥ q)1/ℓ ≥ Df (pT ∥ qT ),

where we also assume that Df (pT ∥ qT ) <∞.

3.3.3 Target paths

The last ingredient needed for defining the probability path divergence (equation 3.6) is

the target path p ∈ P(M). In our framework, p should be defined satisfying the following

requirement:

(i) p0 is pure noise, e.g., a standard Gaussian or uniform.

(ii) p1 approximates the unknown data distribution pdata.

(iii) We have an efficient generation procedure for x ∼ pt.

(iv) We have an approximation procedure for the time (∂t) and space (∂x) derivatives of

log pt(x).
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Note that these requirements do not mean we know of an SDE, generating random variables

distributed as pt, nor a PDE (Fokker-Planck) with pt as its solution. In fact, below we

construct paths for which an SDE/PDE characterization is not known. In that context

the target paths we consider are general; see discussion in Section 3.4.2.

In the following we construct target paths p ∈ P(M) for several manifolds of interest.

At the base of our construction is a kernel pτ (x|y), namely a probability density in x ∈M,

centered at y ∈M, with scale τ > 0. We define our (ideal) target path p ∈ P(M) by

pt(x) =

∫
M
pτ (x | γt(y))pdata(y)dVy, (3.9)

where τ = τ(t), t ∈ [0, 1], is a time-dependent scale function, and γ : [0, 1] ×M →M is

some differentiable in tmap. In practice we do not know pdata, rather, we have an empirical

sample {yi}mi=1, drawn i.i.d. from pdata. Therefore we use the following approximation of

equation 3.9

pt(x) =
1

m

m∑
i=1

pτ (x | γt(yi)). (3.10)

Note, that if we know how to compute or approximate log pτ (x|γt(yi)) then log pt(x),

required for the computation of the PPD, has the form

log pt(x)=logsumexp{log pτ (x|γt(yi)}mi=1− logm.

Depending on the type of manifold, we consider two basic target path constructions that

differ in their prior p0: Unimodal, where the prior probability p0 is centered around a single

designated point inM. Unimodal prior is mainly suitable to non-compact manifolds with

infinite volume such as Euclidean or hyperbolic spaces. Uniform, where the prior p0 is the

uniform density overM. A uniform prior is suitable to compact manifolds such as spheres.

Unimodal prior. Let o ∈ M be some designated point, σ0, σ1 ≥ 0 initial and target

scales. We define p according to equation 3.10 by making the choices:

γt(y) = expo(t logo y) , σ(t) = σ1−t
0 σt1 (3.11)

where τ = σ is the scaling function, and γt(y) moves y to the center o along a geodesic (we

assume the Riemannian expo, logo are defined in a sufficiently large neighborhood of o and

ToM). With these choices, pt starts with a single mode density p0, centered at o ∈ M,

and then splits the unit mass, moving each 1
m part towards the empirical sample yi along

a geodesic while concentrating the density.

Euclidean. Let us instantiate the unimodal path for the Euclidean space,M = Rd, with

the standard metric ⟨v, u⟩ = vTu, where v, u ∈ Rd are (always) column vectors. Our kernel

in this case is the Gaussian, pσ(x|y) = N (x|y, σ2I) with mean y ∈ Rd and covariance σ2I.

Furthermore, for o ∈ Rd, expo(t logo yi) = o + t(yi − o) = (1 − t)o + tyi. Therefore,
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equation 3.10 takes the form

pt(x) =
1

m

m∑
i=1

N (x | (1− t)o+ tyi, σ
2I) (3.12)

and we take σ0 = 1 to represent a standard Gaussian prior, i.e., σ(t) = σt1, and σ1 > 0 is

the (only) hyper-parameter.

Uniform prior. In this family of paths we consider compact manifolds M and start

from the uniform density p0. We assume in this case we have a kernel pκ(x|y) such that

there exists a finite κ0 ≥ 0, for which pκ0(x|y) ≡ |M|−1 for all y ∈M, i.e., pκ0 represents

the uniform density. One way to construct such a kernel on compact submanifolds of

Rd+1, M ⊂ Rd+1, is by restricting an Euclidean Gaussian in Rd+1 to M; we discuss

such a construction on the sphere below. In this case we define the target path using

equation 3.10 again by making the choices

γt(y) = y , κ(t) = (1− κ0 + κ1)
t + κ0 − 1 (3.13)

where τ = κ is the scaling function, and γt(y) leaves samples at their original location.

Sphere. We instantiate the uniform prior paths to the unit spheres M = Sd ⊂ Rd+1

with the induced metric from the Euclidean Rd+1. The von Mises-Fisher (vMF) kernel

[Mar14] is:

pκ(x|y) = cd(κ) exp(κx
T y), (3.14)

where cd(κ) is the normalization constant detailed in Appendix B.1.2. vMF can be seen

as a restricted Gaussian exp(−κ ∥x− y∥22) to the unit sphere x, y ∈ Sd with the relevant

normalization constant. For κ = 0, p0(x|y) is uniform over the sphere for all y ∈ Sd. Hence
we take κ0 = 0, which leaves κ(t) = (1+κ1)

t−1, and κ1 > 0 is the (only) hyper-parameter

in this case. The target path takes the form

pt(x) =
1

m

m∑
i=1

pκ(x|yi) (3.15)

Paths on products of manifolds. We conclude the section with generalizing the target

path construction to product of manifolds. LetM =M1× . . .×MN . Each point x ∈M
is represented as a tuple x = (x1, . . . , xN ), where xj ∈ Mj . For example, in robotics, a

robot’s state can be represented by the sequence of locations and/or rotations of its joints,

i.e., eachMj is either a sphere (S3 for 3D rotations represented as quaternions; S1 for 2D

rotations) or an Euclidean space (representing positions). Let pτ j be a kernel defined in

Mj , and γj is a deformation ofMj . For example, forMj being the Euclidean plane or a

sphere we can use the above definitions for kernels pτ j . Let {yi}
m
i=1 ⊂M be i.i.d. samples

from pdata overM. We define the kernel forM by

pτ (x|yi) =
N∏
j=1

pτ j (x
j |γjt (y

j
i )) (3.16)
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Figure 3.3: 2D toy densities. Each triplet shows (left to right): data samples, generate samples
x ∼ q1, and learned model density q1.

We note that pτ (x|y) is a probability density in x ∈ M, and if pτ j (x
j |yj) is concentrated

(as a function of xj ∈Mj) around yj for all j, then pτ (x|y) is concentrated (as a function

of x ∈ M) around y. Lastly, and use equation 3.10 again to define out target path

p ∈ P(M). Further implementation details for the velocity field vθ are in Appendix B.1.1.

3.4 Previous works

3.4.1 Relations to existing CNF models

The LMC formula (equation 3.4) is a linear first order PDE in log pt. Solving it using the

method of characteristics [Eva97] provides a simple proof of the Instantaneous Change

of Variables Theorem from [Che+18] and generalizes it to the manifold setting. Indeed,

using the chain rule and the LMC we have

∂t [log qt(ψt)] = ∂t log qt(ψt) + ⟨∇x log qt(ψt), v(t, ψt)⟩

= −div v(t, ψt), (3.17)

where ∂t [log qt(ψt)] denotes the total derivative w.r.t. t. Training a neural ODE by max-

imizing the likelihood of the data points xi ∈ M entails computing log qt(xi) and its

derivatives w.r.t. the parameters of the velocity field vt. Using the characteristic method

[Che+18; Lou+20; MN20; FF20] this amounts to solving an ODE for (log qt(ψt), ψt) (equa-

tions 2.24 and 3.17) and differentiating the solution (which involves another ODE solve).

In contrast, minimizing the PPD does not require solving an ODE during training.

Moser Flow (MF) [Roz+21] suggests to train a CNF by formulating the model density

as q1 = p0 − div(u), where u is time independent velocity field over M. Its relation to

our method can be seen by making the choice qt = (1 − t)p0 + tq1, where p0 and q1 are

prior and model probability densities, respectively. Indeed, plugging this path in the mass
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conservation equation (equation 3.5) gives

q1 − p0 + div (qtv) = 0

which directly leads to MF by plugging u = ptv as a time independent solution to this

equation. Although MF also avoids solving an ODE during training and generalizes to

manifolds, it incorporates an additional loss term for keeping the model density q1 posi-

tive; this loss term has high variance and does not scale to high dimensions. Furthermore,

MF models probabilities rather than log-probabilities, which also hinders modeling high

dimensional densities. Lastly, MF models a particular probability path (convex combina-

tions of prior and model), while our framework can match more general paths.

3.4.2 Relations to score-based generative models

Another body of related work concerns score-based generative models [Son+21b], which

encompasses both methods in score-matching [HD05; Vin11; SE19] and diffusion mod-

els [Soh+15; HJA20]. Score-based generative models use a stochastic differential equation

(SDE) to define a time-dependent path between the prior and data densities as a solution

to the Fokker Planck Equation (i.e., particles under Brownian motion). These models

are typically trained by minimizing a weighted combination of score-matching losses, with

recent extensions also exploring surrogate objectives based on variational approximations

to the log-likelihood [Son+21a; HLC21; VKK21; Kin+21].

Consider the arguably simplest SDEs, describing Brownian motion overM. The cor-

responding probability kernel pt(x|y) is the fundamental solution to the heat equation

∂tp = ∆p, where ∆ is the Laplace-Beltrami operator on the manifoldM. Solutions to the

heat equation are known in very few cases [Pen06], and even for the sphere the solution

is only known as an infinite series of Legendre polynomials [TP01]. Therefore using the

SDE framework on manifolds will often require some numerical solutions to the relevant

SDE/ODE. In contrast, our LMC-based formulation provides the flexibility to specify ar-

bitrary target probability paths between the prior and data densities. On the sphere for

example, we use closed form paths defined by vMF distributions. For sampling, solving

an ODE is generally easier than solving an SDE as ODE solvers have higher asymptotic

convergence rates. For example, Euler’s method has order 1 for ODE and only 0.5 for

SDE [KPS12]. Furthermore, ODEs have simple higher order solvers like Runga-Kutta

methods [DP80] with widely used open-source implementations.

3.5 Experiments

We have tested the PPM framework with the PPD for training CNFs on low and mod-

erately high dimensional manifold data. In all experiments we generate the target path

p according to Section 3.3.3 with input data samples {yi}mi=1 ⊂ M. In general, we have

found PPM to facilitate faster training of CNFs with larger models, often producing state

of the art sampling and density estimation.
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Fire Flood Volcano Quakes

Figure 3.4: Earth and Climate dataset: generated samples from the trained PPM in blue, test
samples in red. See table 3.1 for quantitative results.

Table 3.1: Negative log likelihood scores (↓) on the Earth and Climate Dataset [MN20].

Dataset Earthquake Flood Fire Volcano

Mixture vMF 0.59±0.01 1.09±0.01 −0.23±0.02 −0.31±0.07

Stereographic 0.43±0.04 0.99±0.04 −0.40±0.06 −0.64±0.20

Riemannian [MN20] 0.19±0.04 0.90±0.03 −0.66±0.05 −0.97±0.15

Moser Flow [Roz+21] −0.09±0.02 0.62±0.04 −1.03±0.03 −2.02±0.42

PPM (ours) −0.38±0.01 0.25±0.02 −1.40±0.02 −2.38±0.16

3.5.1 Toy densities on R2 and S2

In the first experiment we worked with samples drawn from standard toy distributions

on the 2D Euclidean plane and sphere. For the Euclidean data we used the target path

p defined in equation 3.12 with p0 ∼ N (x|0, I), the standard normal distribution, and

σ1 = 0.01. For the spherical data we used the target path p as defined in equation 3.15

with κ1 = 5000. We used MLP of 3 layers of 256 neurons for the R2 data, and 6 layers of

512 neurons for S2. We used PPD with ℓ = 1. Figure 3.3 depicts the data samples yi along

side samples generated from the learned model, and the model densities. Note the high

similarity between the learned and ground truth (GT) densities; for sphere visualizations

we use Mollweide projection.

3.5.2 Earth and climate dataset

In this experiment we considered the Earth and Climate dataset curated in [MN20]. This

dataset contains locations of earthquakes, floods, fires, and volcano eruptions on earth,

represented as point locations on the 2D sphere, S2 ⊂ R3. The target path p is defined as

in equation 3.15 with κ1 = 55K (best out of κ1 ∈ {5K, 55K, 500K}). We used the same

architecture used in [Roz+21], a MLP with 6 layers of 512 neurons, PPD order ℓ = 2.

Table 3.1 depicts the negative log likelihoods (NLLs) scores, where PPM improves state

of the art by a large margin, where the runner-up is Moser Flow [Roz+21]. Riemannian

CNF and other baselines are taken from [MN20]. Figure 3.4 visualizes generated samples

(blue) and test data samples (red).
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3.5.3 Higher dimensional spheres

In this experiment we test the scaling of PPM to higher dimensional manifold data. We

construct a family of challenging probability distributions, denoted rk, on S15 and compare

PPM to several baselines. We start by defining rk over S15 ⊂ R16: Henceforth, denote

d = 15, and consider an orthogonal set v1, . . . , vk, where 1 ≤ k ≤ d + 1. Let s(x) =∏k
i=1 sign(x

T vi). Define the probability density:

rk(x) =
2

|Sd|

1 if s(x) = 1

0 if s(x) = −1.
(3.18)

To see rk is indeed a probability density, note that the transformation x = (x1, . . . , xd+1) 7→
(−x1, . . . , xd+1) is a volume preserving transformation of Sd and maps the set Ω+ = Sd ∩{
x ∈ Rd+1|s(x) = 1

}
to Ω− = Sd∩

{
x ∈ Rd+1|s(x) = −1

}
, and vise versa. This means that∫

Ω+
dVx =

∫
Ω−

dVx and since Sd = Ω+ ∪ Ω− we have that
∫
Ω+

dVx =
∣∣Sd∣∣ /2. Generating

samples from rk can be done by randomizing a uniform sample x over Sd, if s(x) = 1,

keep x, otherwise take (−x1, x2, . . . , xd+1). Figure 3.6-left depicts several examples of this

density by visualizing random S2 cuts in S15; as k increases the complexity of density

increases. We created datasets for k = 2, 3, 4 with 45K train samples and 5K test samples.

Table 3.2: NLLs on S15.

Method k = 2 k = 3 k = 4

vMF-MM 1.23 1.31 1.33

S-FFJORD 0.77 0.97 1.04

PPM (ours) 0.73 0.83 0.95

For baselines we use: vMF mixture models

(vMF-MM) with 1K and 10K centers randomized

from the training data, and scaling κ was chosen

to be the optimal for the test set. This was done

to compare to the best possible vMF-MM model.

Furthremore, we compared to a version of man-

ifold CNF [Lou+20; MN20; FF20]: We consider

the stereographic projection of the sphere Φ : Rd → Sd, and used FFJORD [Gra+19]

code adapted to the spherical case, denoted as S-FFJORD. In this baseline, computing

log probabilities over the sphere is done by correcting for the stereographic projection,

log p(Φ(u)) = log p(u)− 1
2 log det(DΦ(u)

TDΦ(u)), where u ∈ Rd, log p(u) is the Euclidean

log probability learned by FFJORD, DΦ(u) ∈ R(d+1)×d is the matrix of partials of Φ.

Table 3.2 reports the NLL scores of PPM and the baselines across this dataset. Figure

3.6-right depicts an example of random S2 cut of S15 for the k = 3 case.
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Figure 3.5: Timings.

The above results are reported using an MLP

with 3 layers of 64 neurons for PPM and an equiva-

lent architecture of S-FFJORD, with both methods

running for about 4K seconds. In Figure 3.5 we com-

pared typical epoch running times for this and larger

architecture types for PPM and FFJORD training.

Note that the time difference (in log scale) further

increases for larger architectures.
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Figure 3.6: Left triplet shows the densities rk for k = 2, 3, 4 on random cuts S2 ⊂ S15; right triplet
visualizes the case k = 3 (on a different random cut) from Table 3.2 with PPM model density in
the middle, and S-FFJORD density on the right.

Figure 3.7: Uncurated samples computed with the trained PPM on product manifolds representing
the robot’s state space: Cheetah (top), Walker (middle), and Humanoid (bottom).

3.5.4 Product of manifolds - Robotics

In the last experiment we worked with robotics data generated with the physics and

reinforcement learning engine MuJoCo [Tas+20]. For each of the three robot types, Walker

(2D), Cheetah (2D), and Humanoid (3D), we randomized 17.5K samples from 50 simulated

trajectories consisting of 500 observation each. The state space for the 2D robots is

modeled as the product manifold M = R3 × (S1)6, where R3 represents position, and

S1 represents 2D rotations of a single joint. The state space for the 3D robot is M =

R3× (S1)8× (S3)6, where S3 represents 3D rotations of a joint (via quaternions). We used

the target path p on the product manifold as described in Section 3.3.3. For each robot

type, Figure 3.7 depicts uncurated samples from the trained PPM, and Figure 3.8 shows

a path of noise to data, i.e., ψt(x), t ∈ [0, 1], where x ∼ p0. The generated samples are

qualitatively similar to the data samples. More examples can be found in the published

paper [Ben+22].
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Figure 3.8: Noise to data paths computed with the trained PPM on product manifolds representing
robot’s state space: Cheetah (top), Walker (middle), and Humanoid (bottom).



Chapter 4

Flow Matching

In this chapter, we make our final step, further restricting the degrees of freedom in

CNF training - reducing the generative modeling problem with CNFs to a regression

problem. We propose the Flow Matching (FM) objective, a simple and intuitive training

objective to regress onto a target velocity field that generates a desired probability path.

We first show that we can construct such target velocity fields through per-example (i.e.,

conditional) formulations. Then, inspired by denoising score matching, we show that

a per-example training objective, termed Conditional Flow Matching (CFM), provides

equivalent gradients and does not require explicit knowledge of the intractable target

velocity field. This chapter was published as [Lip+23].

4.1 Motivation and Contributions

The recent influx of amazing advances in generative modeling, e.g., for image generation

[Ram+22; Rom+22b], is mostly facilitated by the scalable and relatively stable training

of diffusion-based models [HJA20; Son+21b]. However, the restriction to simple diffusion

processes leads to a rather confined space of sampling probability paths, resulting in very

long training times and the need to adopt specialized methods (e.g., [SME21; ZC22]) for

efficient sampling.

Although CNFs are capable of modeling arbitrary probability path and are in partic-

ular known to encompass the probability paths modeled by diffusion processes [Son+21a].

However, aside from diffusion that can be trained efficiently via, e.g., denoising score

matching [Vin11], no scalable CNF training algorithms are known. Indeed, maximum

likelihood training (e.g., [Gra+19]) requires expensive numerical ODE simulations, while

existing simulation-free methods either involve intractable integrals [Roz+21] or biased

gradients [Ben+22].

We propose Flow Matching (FM), an efficient simulation-free approach to training CNF

models, allowing the adoption of general probability paths to supervise CNF training.

Importantly, FM breaks the barriers for scalable CNF training beyond diffusion, and

sidesteps the need to reason about diffusion processes to directly work with probability

paths.

32
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Figure 4.1: Unconditional ImageNet-128
samples of a CNF trained using Flow
Matching with Optimal Transport probabil-
ity paths.

In particular, we propose the Flow Match-

ing objective (Section 4.3), a simple and intu-

itive training objective to regress onto a target

velocity field that generates a desired proba-

bility path. We first show that we can con-

struct such target velocity fields through per-

example (i.e., conditional) formulations. Then,

inspired by denoising score matching, we show

that a per-example training objective, termed

Conditional Flow Matching (CFM), provides

equivalent gradients and does not require ex-

plicit knowledge of the intractable target ve-

locity field. Furthermore, we discuss a general

family of per-example probability paths (Sec-

tion 4.4) that can be used for Flow Matching,

which subsumes existing diffusion paths as special instances. Even on diffusion paths, we

find that using FM provides more robust and stable training, and achieves superior per-

formance compared to score matching. Furthermore, this family of probability paths also

includes a particularly interesting case: the velocity field that corresponds to an Optimal

Transport (OT) displacement interpolant [McC97]. We find that conditional OT paths

are simpler than diffusion paths, forming straight line trajectories whereas diffusion paths

result in curved paths. These properties seem to empirically translate to faster training,

faster generation, and better performance.

We empirically validate Flow Matching and the Optimal Transport paths on ImageNet,

a large and highly diverse image dataset. We find that we can easily train models to

achieve favorable performance in both likelihood estimation and sample quality amongst

competing diffusion-based methods. Furthermore, we find that our models produce better

trade-offs between computational cost and sample quality compared to prior methods.

Figure 4.1 depicts selected unconditional ImageNet 128×128 generated samples.

4.2 Notations

In this chapter, we only deal with the Euclidean case. We assume Rd is the data space,

and to simplify cumbersome marginalization integrals, we denote the data distribution by

q := pdata, not to be confused with the previous chapter where q denoted the probability

path generated by the flow.

Let x1 denote a random variable distributed according to some unknown data distri-

bution q(x1). We assume we only have access to data samples from q(x1) but have no

access to the density function itself. Furthermore, we let pt denote a target a probability

path such that p0 = p is a simple distribution, e.g., the standard normal distribution

p(x) = N (x|0, I), and let p1 be approximately equal in distribution to q. We will later

discuss how to construct such target paths following similar principles to [Ben+22].
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4.3 Flow Matching

The Flow Matching objective is then designed to match this target probability path, which

will allow us to flow from p0 to p1. Given a target probability density path pt(x) and a

corresponding velocity field ut(x), which generates pt(x), we define the Flow Matching

(FM) objective as

LFM(θ) = Et,pt(x)∥vt(x)− ut(x)∥
2, (4.1)

where θ denotes the learnable parameters of the CNF velocity field vt (as defined in §2.3),
t ∼ U [0, 1] (uniform distribution), and x ∼ pt(x). Simply put, the FM loss regresses the

velocity field ut with a neural network vt. Upon reaching zero loss, the learned CNF model

will generate pt(x) (See Definition 1).

Flow Matching is a simple and attractive objective, but näıvely on its own, it is in-

tractable to use in practice since we have no prior knowledge for what an appropriate pt

and ut are. There are many choices of probability paths that can satisfy p1(x) ≈ q(x), and
more importantly, we generally don’t have access to a closed form ut that generates the

desired pt. In this section, we show that we can construct both pt and ut using probability

paths and velocity fields that are only defined per sample, and an appropriate method of

aggregation provides the desired pt and ut. Furthermore, this construction allows us to

create a much more tractable objective for Flow Matching.

4.3.1 The Marginalization Trick

A simple way to construct a target probability path is via a mixture of simpler probabil-

ity paths similar to [Ben+22]. Given a particular data sample x1 we denote by pt(x|x1)
a conditional probability path such that it satisfies p0(x|x1) = p(x) at time t = 0, and

we design p1(x|x1) at t = 1 to be a distribution concentrated around x = x1, e.g.,

p1(x|x1) = N (x|x1, σ2I), a normal distribution with x1 mean and a sufficiently small

standard deviation σ > 0. Marginalizing the conditional probability paths over q(x1) give

rise to the marginal probability path

pt(x) =

∫
pt(x|x1)q(x1)dx1, (4.2)

where in particular at time t = 1, the marginal probability p1 is a mixture distribution

that closely approximates the data distribution q,

p1(x) =

∫
p1(x|x1)q(x1)dx1 ≈ q(x). (4.3)

Interestingly, we can also define a marginal velocity field, by “marginalizing” over the

conditional velocity fields in the following sense (we assume pt(x) > 0 for all t and x):

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dx1, (4.4)

where ut(·|x1) : Rd → Rd is a conditional velocity field that generates pt(·|x1). It may not
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seem apparent, but this way of aggregating the conditional velocity fields actually results

in the correct velocity field for modeling the marginal probability path.

Our first key observation is this:

The marginal velocity field (equation 4.4) generates the marginal probability path

(equation 4.2).

This provides a surprising connection between the conditional VFs and the marginal VF.

This connection allows us to break down the unknown and intractable marginal VF into

simpler conditional VFs, which are much simpler to define as these only depend on a single

data sample. We formalize this in the following theorem (proof in §A.2.1):

Theorem 3. Given velocity fields ut(x|x1) that generate conditional probability paths

pt(x|x1), for any distribution q(x1), the marginal velocity field ut in equation 4.4 gen-

erates the marginal probability path pt in equation 4.2, i.e., ut and pt satisfy the continuity

equation (equation 2.28).

4.3.2 Conditional Flow Matching

Unfortunately, due to the intractable integrals in the definitions of the marginal prob-

ability path and VF (equations 4.2 and 4.4), it is still intractable to compute ut, and

consequently, intractable to näıvely compute an unbiased estimator of the original Flow

Matching objective. Instead, we propose a simpler objective, which surprisingly will re-

sult in the same optima as the original objective. Specifically, we consider the Conditional

Flow Matching (CFM) objective,

LCFM(θ) = Et,q(x1),pt(x|x1)

∥∥vt(x)− ut(x|x1)∥∥2, (4.5)

where t ∼ U [0, 1], x1 ∼ q(x1), and now x ∼ pt(x|x1). Unlike the FM objective, the CFM

objective allows us to easily sample unbiased estimates as long as we can efficiently sample

from pt(x|x1) and compute ut(x|x1), both of which can be easily done as they are defined

on a per-sample basis.

Our second key observation is therefore:

The FM (equation 4.1) and CFM (equation 4.5) objectives have identical gradients

w.r.t. θ.

That is, optimizing the CFM objective is equivalent (in expectation) to optimizing the

FM objective. Consequently, this allows us to train a CNF to generate the marginal

probability path pt—which in particular, approximates the unknown data distribution

q at t=1— without ever needing access to either the marginal probability path or the

marginal velocity field. We simply need to design suitable conditional probability paths

and velocity fields. We formalize this property in the following theorem.

Theorem 4. Assuming that pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then, up to a constant

independent of θ, LCFM and LFM are equal. Hence, ∇θLFM(θ) = ∇θLCFM(θ).
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4.4 Conditional Probability Paths and Velocity Fields

The Conditional Flow Matching objective works with any choice of conditional probability

path and conditional velocity fields. In this section, we discuss the construction of pt(x|x1)
and ut(x|x1) for a general family of Gaussian conditional probability paths:

pt(x|x1) = N (x |µt(x1), σt(x1)2I), (4.6)

where µ : [0, 1] × Rd → Rd is the time-dependent mean of the Gaussian distribution,

while σ : [0, 1] × R → R>0 describes a time-dependent scalar standard deviation (std).

We set µ0(x1) = 0 and σ0(x1) = 1, so that all conditional probability paths converge

to the same standard Gaussian noise distribution at t = 0, p(x) = N (x|0, I). We then

set µ1(x1) = x1 and σ1(x1) = σmin, which is set sufficiently small so that p1(x|x1) is a

concentrated Gaussian distribution centered at x1.

There is an infinite number of velocity fields that generate any particular probability

path (e.g., by adding a divergence free component to the continuity equation, see equa-

tion 2.28). We decide to use the simplest velocity field corresponding to a canonical trans-

formation for Gaussian distributions. Specifically, consider the flow (conditioned on x1)

ψt(x) = σt(x1)x+ µt(x1). (4.7)

When x is distributed as a standard Gaussian, ψt(x) is the affine transformation that

maps to a normally-distributed random variable with mean µt(x1) and std σt(x1). That

is to say, according to equation 2.27, ψt pushes the noise distribution p0(x|x1) = p(x) to

pt(x|x1), i.e.,
[ψt]∗ p(x) = pt(x|x1). (4.8)

This flow then provides a velocity field that generates the conditional probability path:

d

dt
ψt(x) = ut(ψt(x)|x1). (4.9)

Reparameterizing pt(x|x1) in terms of just x0 and plugging equation 4.9 in the CFM loss:

LCFM(θ) = Et,q(x1),p(x0)

∥∥∥vt(ψt(x0))−
d

dt
ψt(x0)

∥∥∥2. (4.10)

Since ψt is a simple (invertible) affine map we can use equation 4.9 to solve for ut in

a closed form. Let f ′ denote the derivative with respect to time, i.e., f ′ = d
dtf , for a

time-dependent function f .

Theorem 5. Let pt(x|x1) be a Gaussian probability path as in equation 4.6, and ψt its

corresponding flow map as in equation 4.7. Then, the unique velocity field that defines ψt

has the form:

ut(x|x1) =
σ′t(x1)

σt(x1)
(x− µt(x1)) + µ′t(x1). (4.11)

Consequently, ut(x|x1) generates the Gaussian path pt(x|x1).
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4.4.1 Special Instances of Gaussian Conditional Probability Paths

Our formulation is general for arbitrary functions µt(x1) and σt(x1), and we can set them

to any differentiable functions satisfying the desired boundary conditions. We first discuss

the special cases that recover probability paths corresponding to previously-used diffusion

processes. Since we directly work with probability paths, we can simply depart from rea-

soning about diffusion processes altogether. Therefore, in the second example, we directly

formulate a probability path based on the Wasserstein-2 optimal transport solution.

Example I: Diffusion conditional VFs. Diffusion models start with data points and

gradually add noise until it approximates pure noise. These can be formulated as stochastic

processes, which have strict requirements in order to obtain closed form representation at

arbitrary times t, resulting in Gaussian conditional probability paths pt(x|x1) with specific

choices of mean µt(x1) and std σt(x1) [Soh+15; HJA20; Son+21b]. For example, the

reversed (noise→data) Variance Exploding (VE) path has the form

pt(x|x1) = N (x|x1, σ21−tI), (4.12)

where σt is an increasing function, σ0 = 0, and σ1 ≫ 1. Next, equation 4.12 provides the

choices of µt(x1) = x1 and σt(x1) = σ1−t. Plugging these into equation 4.11 of Theorem 5

ut(x|x1) = −
σ′1−t

σ1−t
(x− x1). (4.13)

The reversed (noise→data) Variance Preserving (VP) diffusion path has the form

pt(x|x1) = N (x |α1−tx1,
(
1− α2

1−t

)
I),where αt = e−

1
2
T (t), T (t) =

∫ t

0
β(s)ds, (4.14)

and β is the noise scale function. Equation 4.14 provides the choices of µt(x1) = α1−tx1

and σt(x1) =
√
1− α2

1−t. Plugging these into equation 4.11 of Theorem 5 we get

ut(x|x1) =
α′
1−t

1− α2
1−t

(α1−tx− x1) = −
T ′(1− t)

2

[
e−T (1−t)x− e−

1
2
T (1−t)x1

1− e−T (1−t)

]
. (4.15)

Our construction of the conditional VF ut(x|x1) does in fact coincide with the velocity

field previously used in the deterministic probability flow ([Son+21b], equation 13) when

restricted to these conditional diffusion processes; see details in Appendix B.2.1. Never-

theless, combining the diffusion conditional VF with the Flow Matching objective offers

an attractive training alternative—which we find to be more stable and robust in our

experiments—to existing score matching approaches.

Another important observation is that, as these probability paths were previously de-

rived as solutions of diffusion processes, they do not actually reach a true noise distribution

in finite time. In practice, p0(x) is simply approximated by a suitable Gaussian distribu-

tion for sampling and likelihood evaluation. Instead, our construction provides full control

over the probability path, and we can just directly set µt and σt, as we will do next.
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t = 0.0 t = 1/3 t = 2/3 t = 1.0

Diffusion path – conditional score function

t = 0.0 t = 1/3 t = 2/3 t = 1.0

OT path – conditional velocity field

Figure 4.2: Compared to the diffusion path’s conditional score function, the OT path’s conditional
velocity field has constant direction in time and is arguably simpler to fit with a parametric model.
Note the blue color denotes larger magnitude while red color denotes smaller magnitude.

Example II: Optimal Transport conditional VFs. An arguably more natural choice

for conditional probability paths is to define the mean and the std to simply change linearly

in time, i.e.,

µt(x1) = tx1, and σt(x) = 1− (1− σmin)t. (4.16)

According to Theorem 5 this path is generated by the VF

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
, (4.17)

which, in contrast to the diffusion conditional VF (equation 4.15), is defined for all t ∈
[0, 1]. The conditional flow that corresponds to ut(x|x1) is

ψt(x) = (1− (1− σmin)t)x+ tx1, (4.18)

and in this case, the CFM loss (see equations 4.5, 4.10) takes the form:

LCFM(θ) = Et,q(x1),p(x0)

∥∥∥vt(ψt(x0))−
(
x1 − (1− σmin)x0

)∥∥∥2. (4.19)

Allowing the mean and std to change linearly not only leads to simple and intuitive

paths, but it is actually also optimal in the following sense. The conditional flow ψt(x) is in

fact the Optimal Transport (OT) displacement map between the two Gaussians p0(x|x1)
and p1(x|x1). The OT interpolant, which is a probability path, is defined to be (see

Definition 1.1 in [McC97]):

pt = [(1− t)id + tψ]⋆p0 (4.20)

where ψ : Rd → Rd is the OT map pushing p0 to p1, id denotes the identity map,

i.e., id(x) = x, and (1 − t)id + tψ is called the OT displacement map. Example 1.7 in

[McC97] shows, that in our case of two Gaussians where the first is a standard one, the

OT displacement map takes the form of equation 4.18.

Diffusion OT

Figure 4.3: Diffusion and OT
conditional trajectories.

Intuitively, particles under the OT displacement map al-

ways move in straight line trajectories and with constant

speed. Figure 4.3 depicts sampling paths for the diffusion

and OT conditional VFs. Interestingly, we find that sam-

pling trajectory from diffusion paths can “overshoot” the fi-

nal sample, resulting in unnecessary backtracking, whilst the

OT paths are guaranteed to stay straight.
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Figure 4.2 compares the diffusion conditional score function (the regression target in a

typical diffusion methods), i.e., ∇ log pt(x|x1) with pt defined as in equation 4.14, with the

OT conditional VF (equation 4.17). The start (p0) and end (p1) Gaussians are identical in

both examples. An interesting observation is that the OT VF has a constant direction in

time, which arguably leads to a simpler regression task. This property can also be verified

directly from equation 4.17 as the VF can be written in the form ut(x|x1) = g(t)h(x|x1).
Figure B.1 in the Appendix shows a visualization of the Diffusion VF. Lastly, we note

that although the conditional flow is optimal, this by no means imply that the marginal

VF is an optimal transport solution. Nevertheless, we expect the marginal velocity field

to remain relatively simple.

4.5 Related Work

Continuous Normalizing Flows were introduced in [Che+18] as a continuous-time version

of Normalizing Flows (see e.g., [KPB20; Pap+21] for an overview). Originally, CNFs

are trained with the maximum likelihood objective, but this involves expensive ODE

simulations for the forward and backward propagation, resulting in high time complexity

due to the sequential nature of ODE simulations. Although some works demonstrated the

capability of CNF generative models for image synthesis [Gra+19], scaling up to very high

dimensional images is inherently difficult. A number of works attempted to regularize the

ODE to be easier to solve, e.g., using augmentation [DDT19], adding regularization terms

[YK19; Fin+20b; Onk+21a; Ton+20; Kel+20], or stochastically sampling the integration

interval [Du+22]. These works merely aim to regularize the ODE but do not change the

fundamental training algorithm.

In order to speed up CNF training, some works have developed simulation-free CNF

training frameworks by explicitly designing the target probability path and the dynamics.

For instance, [Roz+21] consider a linear interpolation between the prior and the target

density but involves integrals that were difficult to estimate in high dimensions, while

[Ben+22] consider general probability paths similar to this work but suffers from biased

gradients in the stochastic minibatch regime. In contrast, the Flow Matching framework

allows simulation-free training with unbiased gradients and readily scales to very high

dimensions.

Another approach to simulation-free training relies on the construction of a diffusion

process to indirectly define the target probability path [Soh+15; HJA20; SE19]. [Son+21b]

shows that diffusion models are trained using denoising score matching [Vin11], a condi-

tional objective that provides unbiased gradients with respect to the score matching ob-

jective. Conditional Flow Matching draws inspiration from this result, but generalizes to

matching vector fields directly. Due to the ease of scalability, diffusion models have received

increased attention, producing a variety of improvements such as loss-rescaling [Son+21a],

adding classifier guidance along with architectural improvements [DN21], and learning the

noise schedule [ND21; Kin+21]. However, [ND21] and [Kin+21] only consider a restricted

setting of Gaussian conditional paths defined by simple diffusion processes with a single
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Figure 4.4: (left) Trajectories of CNFs trained with different objectives on 2D checkerboard data.
The OT path introduces the checkerboard pattern much earlier, while FM results in more stable
training. (right) FM with OT results in more efficient sampling, solved using the midpoint scheme.

parameter—in particular, it does not include our conditional OT path.

In another line of works, [De +21; Wan+21; Pel21] proposed finite time diffusion

constructions via diffusion bridges theory resolving the approximation error incurred by

infinite time denoising constructions.

While existing works make use of a connection between diffusion processes and con-

tinuous normalizing flows with the same probability path [MRO20a; Son+21b; Son+21a],

our work allows us to generalize beyond the class of probability paths modeled by simple

diffusion. With our work, it is possible to completely sidestep the diffusion process con-

struction and reason directly with probability paths, while still retaining efficient training

and log-likelihood evaluations. Lastly, concurrently to our work [LGL23; AV23] arrived at

similar conditional objectives for simulation-free training of CNFs, while [NSM23] derived

an implicit objective when ut is assumed to be a gradient field.

4.6 Experiments

We explore the empirical benefits of using Flow Matching on the image datasets of CIFAR-

10 [KH+09] and ImageNet at resolutions 32, 64, and 128 [CLH17; Den+09a]. We also

ablate the choice of diffusion path in Flow Matching, particularly between the standard

variance preserving diffusion path and the optimal transport path. We discuss how sample

generation is improved by directly parameterizing the generating vector field and using

the Flow Matching objective. Lastly we show Flow Matching can also be used in the

conditional generation setting. Unless otherwise specified, we evaluate likelihood and

samples from the model using dopri5 [DP80] at absolute and relative tolerances of 1e-5.

Generated samples can be found in the Appendix, and all implementation details are in

Appendix B.2.2.

4.6.1 Density Modeling and Sample Quality on ImageNet

We start by comparing the same model architecture, i.e., the U-Net architecture from

[DN21] with minimal changes, trained on CIFAR-10, and ImageNet 32/64 with different
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Table 4.1: Likelihood (BPD), quality of generated samples (FID), and evaluation time (NFE) for
the same model trained with different methods.

CIFAR-10 ImageNet 32×32 ImageNet 64×64

Model NLL↓ FID↓ NFE↓ NLL↓ FID↓ NFE↓ NLL↓ FID↓ NFE↓

Ablations

DDPM 3.12 7.48 274 3.54 6.99 262 3.32 17.36 264

Score Matching 3.16 19.94 242 3.56 5.68 178 3.40 19.74 441

ScoreFlow 3.09 20.78 428 3.55 14.14 195 3.36 24.95 601

Ours

FM w/ Diffusion 3.10 8.06 183 3.54 6.37 193 3.33 16.88 187

FM w/ OT 2.99 6.35 142 3.53 5.02 122 3.31 14.45 138

ImageNet 128×128

Model NLL↓ FID↓

MGAN [Hoa+18] – 58.9

PacGAN2 [Lin+18] – 57.5

Logo-GAN-AE [Sag+18] – 50.9

Self-cond. GAN [Luč+19] – 41.7

Uncond. BigGAN [Luč+19] – 25.3

PGMGAN [Arm+21] – 21.7

FM w/ OT 2.90 20.9

popular diffusion-based losses: DDPM from [HJA20], Score Matching (SM) [Son+21b],

and Score Flow (SF) [Son+21a]; see Appendix B.2.2 for exact details. Table 4.1 (left)

summarizes our results alongside these baselines reporting negative log-likelihood (NLL)

in units of bits per dimension (BPD), sample quality as measured by the Frechet Inception

Distance (FID; [Heu+17]), and averaged number of function evaluations (NFE) required

for the adaptive solver to reach its a prespecified numerical tolerance, averaged over 50k

samples. All models are trained using the same architecture, hyperparameter values and

number of training iterations, where baselines are allowed more iterations for better con-

vergence. Note that these are unconditional models. On both CIFAR-10 and ImageNet,

FM-OT consistently obtains best results across all our quantitative measures compared to

competing methods. We are noticing a higher that usual FID performance in CIFAR-10

compared to previous works [HJA20; Son+21b; Son+21a] that can possibly be explained

by the fact that our used architecture was not optimized for CIFAR-10.

Secondly, Table 4.1 (right) compares a model trained using Flow Matching with the OT

path on ImageNet at resolution 128×128. Our FID is state-of-the-art with the exception

of IC-GAN [Cas+21] which uses conditioning with a self-supervised ResNet50 model, and

therefore is left out of this table. Figures B.4, B.5, B.6 in the Appendix show non-curated

samples from these models.

Figure 4.5: Image quality during
training, ImageNet 64×64.

Faster training. While existing works train diffu-

sion models with a very high number of iterations (e.g.,

1.3m and 10m iterations are reported by Score Flow

and VDM, respectively), we find that Flow Matching

generally converges much faster. Figure 4.5 shows FID

curves during training of Flow Matching and all base-

lines for ImageNet 64×64; FM-OT is able to lower the

FID faster and to a greater extent than the alternatives.

For ImageNet-128 [DN21] train for 4.36m iterations with

batch size 256, while FM (with 25% larger model) used 500k iterations with batch size

1.5k, i.e., 33% less image throughput; see Table B.1 for exact details. Furthermore, the

cost of sampling from a model can drastically change during training for score matching,

whereas the sampling cost stays constant when training with Flow Matching (Figure B.3

in Appendix).
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Score Matching w/ Diffusion Flow Matching w/ Diffusion Flow Matching w/ OT

Figure 4.6: Sample paths from the same initial noise with models trained on ImageNet 64×64. The
OT path reduces noise roughly linearly, while diffusion paths visibly remove noise only towards
the end of the path. Note also the differences between the generated images.
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Figure 4.7: Flow Matching, especially when using OT paths, allows us to use fewer evaluations
for sampling while retaining similar numerical error (left) and sample quality (right). Results are
shown for models trained on ImageNet 32×32, and numerical errors are for the midpoint scheme.

4.6.2 Sampling Efficiency

For sampling, we first draw a random noise sample x0 ∼ N (0, I) then compute ψ1(x0)

by solving equation 2.24 with the trained VF, vt, on the interval t ∈ [0, 1] using an ODE

solver. While diffusion models can also be sampled through an SDE formulation, this can

be highly inefficient and many methods that propose fast samplers (e.g., [SME21; ZC22])

directly make use of the ODE perspective (see Appendix B.2.1). In part, this is due

to ODE solvers being much more efficient—yielding lower error at similar computational

costs [KPS12]—and the multitude of available ODE solver schemes. When compared to

our ablation models, we find that models trained using Flow Matching with the OT path

always result in the most efficient sampler, regardless of ODE solver, as demonstrated

next.

Sample paths. We first qualitatively visualize the difference in sampling paths be-

tween diffusion and OT. Figure 4.6 shows samples from ImageNet-64 models using identical

random seeds, where we find that the OT path model starts generating images sooner than

the diffusion path models, where noise dominates the image until the very last time point.

We additionally depict the probability density paths in 2D generation of a checkerboard

pattern, Figure 4.4 (left), noticing a similar trend.

Low-cost samples. We next switch to fixed-step solvers and compare low (≤100)
NFE samples computed with the ImageNet-32 models from Table 4.1. In Figure 4.7 (left),

we compare the per-pixel MSE of low NFE solutions compared with 1000 NFE solutions

(we use 256 random noise seeds), and notice that the FM with OT model produces the

best numerical error, in terms of computational cost, requiring roughly only 60% of the

NFEs to reach the same error threshold as diffusion models. Secondly, Figure 4.7 (right)

shows how FID changes as a result of the computational cost, where we find FM with

OT is able to achieve decent FID even at very low NFE values, producing better trade-off

between sample quality and cost compared to ablated models. Figure 4.4 (right) shows

low-cost sampling effects for the 2D checkerboard experiment.
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4.6.3 Conditional Sampling from Low-Resolution Images

Model FID↓ IS↑ PSNR↑ SSIM↑

Reference 1.9 240.8 – –

Regression 15.2 121.1 27.9 0.801

SR3 [Sah+22b] 5.2 180.1 26.4 0.762

FM w/ OT 3.4 200.8 24.7 0.747

Table 4.2: Image super-resolution
on the ImageNet validation set.

Lastly, we experimented with Flow Matching for con-

ditional image generation. In particular, upsampling

images from 64×64 to 256×256. We follow the evalu-

ation procedure in [Sah+22b] and compute the FID of

the upsampled validation images; baselines include ref-

erence (FID of original validation set), and regression.

Results are in Table 4.2. Upsampled image samples are

shown in Figures B.7, B.8 in the Appendix. FM-OT

achieves similar PSNR and SSIM values to [Sah+22b] while considerably improving on

FID and IS, which as argued by [Sah+22b] is a better indication of generation quality.
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Chapter 5

Multisample Flow Matching

Simulation-free methods for training continuous-time generative models construct prob-

ability paths that go between noise distributions and individual data samples. Recent

works, such as Flow Matching, derived paths that are optimal for each data sample.

However, these algorithms rely on independent data and noise samples, and do not ex-

ploit underlying structure in the data distribution for constructing probability paths. We

propose Multisample Flow Matching, a more general framework that uses non-trivial cou-

plings between data and noise samples while satisfying the correct marginal constraints.

At very small overhead costs, this generalization allows us to (i) reduce gradient variance

during training, (ii) obtain straighter flows for the learned vector field, which allows us

to generate high-quality samples using fewer function evaluations, and (iii) obtain trans-

port maps with lower cost in high dimensions, which has applications beyond generative

modeling. Importantly, we do so in a completely simulation-free manner with a simple

minimization objective. We show that our proposed methods improve sample consistency

on downsampled ImageNet data sets, and lead to better low-cost sample generation. This

chapter was publishhed as [Poo+23].

5.1 Motivation and Contributions

Deep generative models offer an attractive family of paradigms that can approximate a

data distribution and produce high quality samples, with impressive results in recent years

[Ram+22; Sah+22a; Gaf+22]. In particular, these works have made use of simulation-free

training methods for diffusion models [HJA20; Son+21b]. A number of works have also

adopted and generalized these simulation-free methods [Lip+23; AV23; LGL23; NSM22]

for continuous normalizing flows (CNF; [Che+18]).

In Chapter §4, we proposed Flow Matching (FM), a method to train CNFs based

on constructing explicit conditional probability paths between the noise distribution (at

time t = 0) and each data sample (at time t = 1). Furthermore, we showed that these

conditional probability paths can be taken to be the optimal transport path when the

noise distribution is a standard Gaussian, a typical assumption in generative modeling.

However, this does not imply that the marginal probability path (marginalized over the

45
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data distribution) is anywhere close to the optimal transport path between the noise and

data distributions.

Most existing works, including diffusion models and Flow Matching, have only consid-

ered conditional sample paths where the endpoints (a noise sample and a data sample)

are sampled independently. However, this results in non-zero gradient variances even at

convergence, slow training times, and in particular limits the design of probability paths.

In turn, it becomes difficult to create paths that are fast to simulate, a desirable property

for both likelihood evaluation and sampling.

Figure 5.1: The Multisample Flow Matching Algorithm. We randomly sample noise and data
samples, then re-arrange the pairing to be either optimal, or stable, within the current minibatch.

Contributions: We present a tractable instance of Flow Matching with joint distri-

butions, which we call Multisample Flow Matching. Our proposed method generalizes the

construction of probability paths by considering non-independent couplings of k-sample

empirical distributions.

Among other theoretical results, we show that if an appropriate optimal transport (OT)

inspired coupling is chosen, then sample paths become straight as the batch size k →∞,

leading to more efficient simulation. In practice, we observe both improved sample quality

on ImageNet using adaptive ODE solvers and using simple Euler discretizations with a

low budget number of function evaluations. Empirically, we find that on ImageNet, we

can reduce the required sampling cost by 30% to 60% for achieving a low Fréchet Inception

Distance (FID) compared to a baseline Flow Matching model, while introducing only 4%

more training time. This improvement in sample efficiency comes at no degradation in

performance, e.g.log-likelihood and sample quality.

Within the deep generative modeling paradigm, this allows us to regularize towards

the optimal velocity field in a completely simulation-free manner (unlike e.g.[Fin+20b;

LGL23]), and avoids adversarial formulations (unlike e.g.[Mak+20; AV23]). In partic-

ular, we are the first work to be able to make use of solutions from optimal solutions

on minibatches while preserving the correct marginal distributions, whereas prior works

would only fit to the barycentric average (see detailed discussion in §5.5.1). Beyond gen-

erative modeling, we also show how our method can be seen as a new way to compute

approximately optimal transport maps between arbitrary distributions in settings where

the cost function is completely unknown and only minibatch optimal transport solutions

are provided.



CHAPTER 5. MULTISAMPLE FLOW MATCHING 47

5.2 Preliminaries

5.2.1 Flow Matching

In this chapter, we extend flow matching (see §4) to joint distributions, considering non-

trivial coupling between the source and target distributions. We first slightly change some

notations to make the treatment of the source and target distributions more symmetric

as well as simplify a little the notations of equation 4.9 to make the connection between

the conditional flow and conditional velocity field clearer.

Given two marginal distributions q0(x0) (source) and q1(x1) (target) for which we

would like to learn a CNF to transport between, Flow Matching proposes the Conditional

Flow Matching (CFM) objective:

Et,q1(x1),pt(x|x1) ∥vt(x; θ)− ut(xt|x1)∥
2 , (5.1)

with xt := ψt(x0|x1) and ψt(x0|x1) is the conditional flow defined by the conditional veloc-

ity field ut(x|x1) and equation 2.24, generating the conditional probability path satisfying:

pt=0(x|x1) = q0(x) and pt=1(x|x1) = δ(x− x1), (5.2)

where δ(x− a) is a Dirac mass centered at a ∈ Rd. By construction, pt(x|x1) now satisfies

both marginal constraints.

Conditional OT (CondOT) path

One particular choice of conditional path pt(x|x1) is to use the flow that corresponds

to the optimal transport displacement interpolant [McC97] when q0(x0) is the standard

Gaussian. The corresponding velocity field is

ut(xt|x1) =
x1 − x
1− t

. (5.3)

Using this conditional velocity field in equation 2.24, this gives the conditional flow

xt = ψt(x0|x1) = (1− t)x0 + tx1 . (5.4)

Substituting equation 5.4 into equation 5.3, one can also express the value of this velocity

field using a simpler expression,

ut(xt|x1) = x1 − x0 . (5.5)

It is evident that this results in conditional flows that (i) tranports all points x0 from

t = 0 to x1 at exactly t = 1 and (ii) are straight paths between the samples x0 and

x1. This particular case of straight paths was also studied by [LGL23] and [AV23], where

the conditional flow equation 5.4 is referred to as a stochastic interpolant. In §4 we

showed that the conditional construction can be applied to a large class of Gaussian
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conditional probability paths, namely when pt(x|x1) = N (x|µt(x1), σt(x1)2I). This family

of probability paths encompasses most prior diffusion models where probability paths are

induced by simple diffusion processes with linear drift and constant diffusion (e.g.[HJA20;

Son+21b]). However, existing works mostly consider settings where q0(x0) and q1(x1) are

sampled independently when computing training objectives such as equation 5.1.

5.2.2 Optimal Transport: Static & Dynamic

Optimal transport generally considers methodologies that define some notion of distance

on the space of probability measures [Vil08; Vil03; San15]. Letting P(Rd) be the space of

probability measures over Rd, we define the Wasserstein distance with respect to a cost

function c : Rd × Rd → R+ between two measures q0, q1 ∈ P(Rd) as [Kan42]

Wc(q0, q1) := min
q∈Γ(q0,q1)

Eq(x0,x1)[c(x0, x1)] , (5.6)

where Γ(q0, q1) is the set of joint measures with left marginal equal to q0 and right marginal

equal to q1, called the set of couplings. The minimizer to equation 5.6 is called the

optimal coupling, which we denote by q∗c . In the case where c(x0, x1) := ∥x0 − x1∥2, the
squared-Euclidean distance, equation 5.6 amounts to the (squared) 2-Wasserstein distance

W 2
2 (q0, q1), and we simply write the optimal transport plan as q∗.

Considering again the squared-Euclidean cost, in the case where q0 exhibits a density

over Rd (e.g. if q0 is the standard normal distribution), [BB00] states that W 2
2 (q0, q1) can

be equivalently expressed as a dynamic formulation,

W 2
2 (q0, q1) = min

pt,ut

∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x)dx0dt. (5.7)

where ut generates pt, and pt satisfies boundary conditions pt=0 = q0 and pt=1 = q1. The

optimality condition ensures that sample paths xt are straight lines, i.e. minimize the

length of the path, and leads to paths that are much easier to simulate. Some prior ap-

proaches have sought to regularize the model using this optimality objective (e.g.[Ton+20;

Fin+20b]). In contrast, instead of directly minimizing equation 5.7, we will discuss an ap-

proach based on using solutions of the optimal coupling q∗ on minibatch problems, while

leaving the marginal constraints intact.

5.3 Flow Matching with Joint Distributions

While Conditional Flow Matching in equation 5.1 leads to an unbiased gradient estimator

for the Flow Matching objective, it was designed with independently sampled x0 and x1

in mind. We generalize the framework from Subsection 5.2.1 to a construction that uses

arbitrary joint distributions of q(x0, x1) which satisfy the correct marginal constraints, i.e.∫
q(x0, x1)dx1=q0(x0) ,

∫
q(x0, x1)dx0=q1(x1). (5.8)
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We will show in §5.4 that this can potentially lead to lower gradient variance during

training and allow us to design more optimal marginal vector fields ut(x) with desirable

properties such as improved sample efficiency.

Building on top of Flow Matching, we propose modifying the conditional probability

path construction equation 5.2 so that at t = 0, we define

pt=0(x0|x1) = q(x0|x1). (5.9)

where q(x0|x1) is the conditional distribution q(x0,x1)
q1(x1)

. Using this construction, we still

satisfy the marginal constraint,

p0(x) =

∫
p0(x|x1)q1(x1)dx1 =

∫
q(x, x1)dx1 = q0(x)

i.e., pt=0(x) =
∫
q(x, x1)dx1 = q0(x) by the assumption made in equation 5.8. Then

similar to [CL23], we note that the conditional probability path pt(x|x1) need not be

explicitly formulated for training, and that only an appropriate conditional velocity field

ut(x|x1) needs to be chosen such that all points arrive at x1 at t = 1, which ensures

pt=1(x|x1) = δ(x − x1). As such, we can make use of the same conditional velocity field

as prior works, e.g., the choice in equations 5.3 to 5.5.

We then propose the Joint CFM objective as

LJCFM = Et,q(x0,x1) ∥vt(xt; θ)− ut(xt|x1)∥
2 , (5.10)

where xt = ψt(x0|x1) is the conditional flow. Training only involves sampling from

q(x0, x1) and does not require explicitly knowing the densities of q(x0, x1) or pt(x|x1). Note
that equation 5.10 reduces to the original CFM objective equation 5.1 when q(x0, x1) =

q0(x0)q1(x1).

A quick sanity check shows that this objective can be used with any choice of joint

distribution q(x0, x1).

Lemma 1. The optimal velocity field vt(·; θ) in equation 5.10, which is the marginal

velocity field ut, maps between the marginal distributions q0(x0) and q1(x1).

In the remainder of the section, we highlight some motivations for using joint distri-

butions q(x0, x1) that are different from the independent distribution q0(x0)q1(x1).

Variance reduction Choosing a good joint distribution can be seen as a way to reduce

the variance of the gradient estimate, which improves and speeds up training. We develop

the gradient covariance at a fixed x and t, and bound its total variance:

Lemma 2. The total variance (i.e. the trace of the covariance) of the gradient at a fixed

x and t is bounded as:

σ2t,x = Tr
[
Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

) ]
(5.11)

≤ ∥∇θvt(x; θ)∥2 Ept(x1|x)∥ut(x)− ut(x|x1)∥
2
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Then Et,pt(x)[σ
2
t,x] is bounded above by:

max
t,x
∥∇θvt(x; θ)∥2 × LJCFM (5.12)

This proves that Et,pt(x)[σ
2
t,x], which is the average gradient variance at fixed x and t,

is upper bounded in terms of the Joint CFM objective. That means that minimizing the

Joint CFM objective helps in decreasing Et,pt(x)[σ
2
t,x]. Note also that Et,pt(x)[σ

2
t,x] is not

the gradient variance and is always smaller, as it does not account for variability over x

and t, but it is a good proxy for it. The proof is in App. A.3.2.

Sampling x0 and x1 independently generally cannot achieve value zero for Et,pt(x)[σ
2
t,x]

even at the optimum, since there are an infinite number of pairs (x0, x1) whose conditional

path crosses any particular x at a time t. As shown in equation 5.12, having a low optimal

value for the Joint CFM objective is a good proxy for low gradient variance and hence a

desirable property for choosing a joint distribution q(x0, x1). In §5.4, we show that certain

joint distributions have optimal Joint CFM values close to zero.

Straight flows Ideally, the flow ψt of the marginal vector field ut (and of the learned

vθ by extension) should be close to a straight line. The reason is that ODEs with straight

trajectories can be solved with high accuracy using fewer steps (i.e. function evaluations),

which speeds up sample generation. The quantity

S = Et,q0(x0)

[
∥ut(ψt(x0))∥2 − ∥ψ1(x0)− x0∥2

]
, (5.13)

which we call the straightness of the flow and was also studied by [Liu22], measures how

straight the trajectories are. Namely, we can rewrite it as

S = Et,q0(x0)

[
∥ut(ψt(x0))− Et′ [ut′(ψt′(x0))] ∥2

]
, (5.14)

which shows that S ≥ 0 and only zero if ut(ψt(x0)) is constant along t, which is equivalent

to ψt(x0) being a straight line.

When x0 and x1 are sampled independently, the straightness is in general far from

zero. This can be seen in the CondOT plots in Figure 5.2 (right); if flows were close to

straight lines, samples generated with one function evaluation (NFE=1) would be of high

quality. In §5.4, we show that for certain joint distributions, the straightness of the flow

is close to zero.

Near-optimal transport cost By Lemma 1, the flow ψt corresponding to the optimal

ut satisfies that ψ0(x0) = x0 ∼ q0 and ψ1(x0) ∼ q1. Hence, x0 7→ ψ1(x0) is a transport

map between q0 and q1 with an associated transport cost

Eq0(x0)∥ψ1(x0)− x0∥2. (5.15)
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There is no reason to believe that when x0 and x1 are sampled independently, the transport

cost Eq0(x0)∥ψ1(x0) − x0∥2 will be anywhere near the optimal transport cost W 2
2 (p0, p1).

Yet, in §5.4 we show that for well chosen q, the transport cost for ψ1 does approach its

optimal value. Computing optimal (or near-optimal) transport maps in high dimensions

is a challenging task [Mak+20; Amo23] that extends beyond generative modeling and into

the field of optimal transport, and it has applications in computer vision [Fey+17; Sol+15;

Sol+16; Liu+23a] and computational biology [Lüb+22; Bun+21; BKc22; Sch+19], for in-

stance. Hence, Joint CFM may also be viewed as a practical way to obtain approximately

optimal transport maps in this context.

5.4 Multisample Flow Matching

Constructing a joint distribution satisfying the marginal constraints is difficult, especially

since at least one of the marginal distributions is based on empirical data. We thus

discuss a method to construct the joint distribution q(x0, x1) implictly by designing a

suitable sampling procedure that leaves the marginal distributions invariant. Note that

training with equation 5.10 only requires sampling from q(x0, x1).

We use a multisample construction for q(x0, x1) in the following manner:

1. Sample {x(i)0 }ki=1 ∼ q0(x0) and {x
(i)
1 }ki=1 ∼ q1(x1).

2. Construct a doubly-stochastic matrix with probabilities π(i, j) dependent on the sam-

ples {x(i)0 }ki=1 and {x(i)1 }ki=1.

3. Sample from the discrete distribution,

qk(x0, x1) =
1
k

∑k
i,j=1 δ(x0 − xi0)δ(x1 − x

j
1)π(i, j).

Marginalizing qk(x0, x1) over samples from Step 1, we obtain the implicitly defined q(x0, x1).

By choosing different couplings π(i, j), we induce different joint distributions. In this work,

we focus on couplings that induce joint distributions which approximates, or at least par-

tially satisfies, the optimal transport joint distribution. The following result, proven in

App. A.3.3, guarantees that q has the right marginals.

Lemma 3. The joint distribution q(x0, x1) constructed in Steps [1-3] has marginals q0(x0)

and q1(x1).

That is, the marginal constraints equation 5.8 are satisfied and consequently we are

allowed to use the framework of §5.3.

5.4.1 CondOT is Uniform Coupling

The aforementioned multisample construction subsumes the independent joint distribu-

tion used by prior works, when the joint coupling is taken to be uniformly distributed,

i.e.π(i, j) = 1
k . This is precisely the coupling we used in §4 under our introduced notion

of Multisample Flow Matching, and acts as a natural reference point.
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Figure 5.2: Multisample Flow Matching learn probability paths that are much closer to an opti-
mal transport path than baselines such as Diffusion and CondOT paths. (Left) Exact marginal
probability paths. (Right) Samples from trained models at t = 1 for different numbers of function
evaluations (NFE), using Euler discretization. Furthermore, the final values of the Joint CFM ob-
jective equation 5.10—upper bounds on the variance of ut at convergence—are: CondOT: 10.72;
Stable: 1.60, Heuristic: 1.56; BatchEOT: 0.57, BatchOT: 0.24.

5.4.2 Batch Optimal Transport (BatchOT) Couplings

The natural connections between optimal transport theory and optimal sampling paths

in terms of straight-line interpolations, lead us to the following pseudo-deterministic cou-

pling, which we call Batch Optimal Transport (BatchOT). While it is difficult to solve

equation 5.6 at the population level, it can efficiently solved on the level of samples. Let

{x(i)0 }ki=1 ∼ q0(x0) and {x(i)1 }ki=1 ∼ q1(x1). When defined on batches of samples, the OT

problem equation 5.6 can be solved exactly and efficiently using standard solvers, as in POT

[Fla+21, Python Optimal Transport]. On a batch of k samples, the runtime complexity

is well-understood via either the Hungarian algorithm or network simplex algorithm, with

an overall complexity of O(k3) [PC19, Chapter 3]. The resulting coupling πk,∗ from the

algorithm is a permutation matrix, which is a type of doubly-stochastic matrix that we

can incorporate into Step 3 of our procedure.

We consider the effect that the sample size k has on the marginal vector field ut(x).

The following theorem shows that in the limit of k → ∞, BatchOT satisfies the three

criteria that motivate Joint CFM: variance reduction, straight flows, and near-optimal

transport cost.

Theorem 6 (Informal). Suppose that Multisample Flow Matching is run with BatchOT.

Then, as k →∞,

(i) The value of the Joint CFM objective (equation 5.10) for the optimal ut converges

to 0.

(ii) The straightness S for the optimal marginal vector field ut (equation 5.13) converges

to zero.

(iii) The transport cost Eq0(x0)∥ψ1(x0)− x0∥2 (equation 5.15) associated to ut converges

to the optimal transport cost W 2
2 (p0, p1).

Result (i) implies that the gradient variance both during training and at convergence
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is reduced due to equation 5.12; result (ii) implies the optimal model will be easier to

simulate between t=0 and t=1; result (iii) implies that Multisample Flow Matching can

be used as a simulation-free algorithm for approximating optimal transport maps.

The full version of Theorem 6 can be found in Appendix A.3.4, and it makes use

of standard, weak technical assumptions which are common in the optimal transport

literature. While Theorem 6 only analyzes asymptotic properties, we provide theoretical

evidence that the transport cost decreases with k, as summarized by a monotonicity result

in Theorem 11.

5.4.3 Batch Entropic OT (BatchEOT) Couplings

For k sufficiently large, the cubic complexity of the BatchOT approach is not always

desirable, and instead one may consider approximate methods that produce couplings suf-

ficiently close to BatchOT at a lower computational cost. A popular surrogate, pioneered

in [Cut13], is to incorporate an entropic penalty parameter on the doubly stochastic matrix

π(i, j), pulling it closer to the independent coupling:

min
qk∈Γ(q0,q1)

Eqk(x0,x1)∥x0 − x1∥
2 + ϵH(qk) ,

where H(qk) = −
∑

i,j πi,j(log(πi,j) − 1) is the entropy of the doubly stochastic matrix

π, and ϵ > 0 is some finite regularization parameter. The optimality conditions of this

strictly convex program leads to Sinkhorn’s algorithm, which has a runtime of Õ(k2/ϵ)
[AWR17].

The output of performing Sinkhorn’s algorithm is a doubly-stochastic matrix. The

two limiting regimes of the regularization parameter are well understood (c.f. [PC19],

Proposition 4.1, for instance): as ϵ → 0, BatchEOT recovers the BatchOT permutation

matrix from §5.4.2; as ϵ → ∞, BatchEOT recovers the independent coupling on the

indices from §5.4.1.

5.4.4 Stable and Heuristic Couplings

An alternative approach is to consider faster algorithms that satisfy at least some desir-

able properties of an optimal coupling. In particular, an optimal coupling is stable. A

permutation coupling is stable if no pair of x
(i)
0 and x

(j)
1 favor each other over their as-

signed pairs based on the coupling. Such a problem can be solved using the Gale-Shapeley

algorithm [GS62] which has a compute cost of O(k2) given the cross set ranking of all

samples. Starting from a random assignment, it is an iterative algorithm that reassigns

pairs if they violate the stability property and can terminate very early in practice. Note

that in a cost-based ranking, one has to sort the coupling costs of each sample with all

samples in the opposing set, resulting in an overall O(k2 log(k)) compute cost.

The Gale-Shapeley algorithm is agnostic to any particular costs, however, as stability

is only defined in terms of relative rankings of individual samples. We design a modified

version of this algorithm based on a heuristic for satisfying the cyclical monotonicity
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property of optimal transport, namely that should pairs be reassigned, the reassignment

should not increase the total cost of already matched pairs. We refer to the output of this

modified algorithm as a heuristic coupling and discuss the details in Appendix B.3.1.

5.5 Related Work

Generative modeling and optimal transport are inherently intertwined topics, both often

aiming to learn a transport between two distributions but with very different goals. Opti-

mal transport is widely recognized as a powerful tool for large-scale generative modeling as

it can be used to stabilize training [ACB17]. In the context of continuous-time generative

modeling, optimal transport has been used to regularize continuous normalizing flows for

easier simulation [Fin+20b; Onk+21a], and increase interpretability [Ton+20]. However,

the existing methods for encouraging optimality in a generative model generally require ei-

ther solving a potentially unstable min-max optimization problem (e.g.[ACB17; Mak+20;

AV23]) or require simulation of the learned vector field as part of training (e.g.[Fin+20b;

LGL23]). In contrast, the approach of using batch optimal couplings can be used to avoid

the min-max optimization problem, but has not been successfully applied to generative

modeling as they do not satisfy marginal constraints—we discuss this further in the follow-

ing §5.5.1. On the other hand, neural optimal transport approaches are mainly centered

around the quadratic cost [Mak+20; Amo23; Fin+20a] or rely heavily on knowing the

exact cost function [Fan+22; Asa+24]. Being capable of using batch optimal couplings al-

lows us to build generative models to approximate optimal maps under any cost function,

and even when the cost function is unknown.

5.5.1 Minibatch Couplings for Generative Modeling

Among works that use optimal transport for training generative models are those that

make use of batch optimal solutions and their gradients such as [Li+17; GPC18; Fat+20;

LGS19]. However, näıvely using solutions to batches only produces, at best, the barycentric

map, i.e.the map that fits to average of the batch couplings [Fer+14; Seg+17; PN21], and

does not correctly match the true marginal distribution. This is a well-known problem

and while multiple works (e.g.[Fat+21; Ngu+22]) have attempted to circumvent the issue

through alternative formulations of optimality, the lack of marginal preservation has been

a major downside of using batch couplings for generative modeling as they do not have

the ability to match the target distribution for finite batch sizes. This is due to the use of

building models within the static setting, where the map is parameterized directly with

a neural network. In contrast, we have shown in §3 that in our dynamic setting, where

we parameterize the map as the solution of a neural ODE, it is possible to preserve the

marginal distribution exactly. Furthermore, we have shown in Proposition 3 (App. A.3.5)

that our method produces a map that is no higher cost than the joint distribution induced

from BatchOT couplings.

Concurrently, [Ton+24] motivates the use of BatchOT solutions within a similar frame-
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work as our Joint CFM, but from the perspective of obtaining accurate solutions to dy-

namic optimal transport problems. Similarly, [LKY23] propose to explicitly learn a joint

distribution, parameterized with a neural network, with the aim of minimizing trajectory

curvature; this is done using through an auxiliary VAE-style objective function. In con-

trast, we propose a family of couplings that all satisfy the marginal constraints, all of which

are easy to implement and have negligible cost during training. Our construction allow us

to focus on (i) fixing consistency issues within simulation-free generative models, and (ii)

using Joint CFM to obtain more optimal solutions than the original BatchOT solutions.

5.6 Experiments

We empirically investigate Multisample Flow Matching on a suite of experiments. First,

we show how different couplings affect the model on a 2D distribution. We then turn to

benchmark, high-dimensional datasets, namely ImageNet [Den+09b]. We use the official

face-blurred ImageNet data and then downsample to 32×32 and 64×64 using the open

source preprocessing scripts from [CLH17]. Finally, we explore the setting of unknown

cost functions while only batch couplings are provided. Full details on the experimental

setting can be found in Appendix B.3.2.

5.6.1 Insights from 2D experiments

Figure 5.2 shows the proposed Multisample Flow Matching algorithm on fitting to a check-

board pattern distribution in 2D. We show the marginal probability paths induced by

different coupling algorithms, as well as low-NFE samples of trained models on these

probability paths.

The diffusion and CondOT probability paths do not capture intricate details of the

data distribution until it is almost at the end of the trajectory, whereas Multisample Flow

Matching approaches provide a gradual transition to the target distribution along the

flow. We also see that with a fixed step solver, the BatchOT method is able to produce an

accurate target distribution in just one Euler step in this low-dimensional setting, while

the other coupling approaches also get pretty close. Finally, it is interesting that both

Stable and Heuristic exhibit very similar probability paths to optimal transport despite

only satisfying weaker conditions.

5.6.2 Image Datasets

We find that Multisample Flow Matching retains the performance of Flow Matching while

improving on sample quality, compute cost, and variance. In Table B.4, we report sample

quality using the standard Fréchet Inception Distance (FID), negative log-likelihood values

using bits per dimension (BPD), and compute cost using number of function evaluations

(NFE); these are all standard metrics throughout the literature. Additionally, we report

the variance of ut(x|x0, x1), estimated using the Joint CFM loss equation 5.10 which is
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Figure 5.3: Sample quality (FID) vs compute cost (NFE) using Euler discretization. CondOT has
significantly higher FID at lower NFE compared to proposed methods.

an upper bound on the variance. We do not observe any performance degradations while

simulation efficiency improves significantly, even with small batch sizes.

Additionally, in Appendix B.3.3, we include runtime comparisons between Flow Match-

ing and Multisample Flow Matching. On ImageNet32, we only observe a 0.8% relative

increase in runtime compared to Flow Matching, and a 4% increase on ImageNet64.

Interestingly, we find that the Stable coupling actually performs on par, and some

times better than the BatchOT coupling, despite having a smaller asymptotic compute

cost and only satisfying a weaker condition within each batch.

As FID is computed over a full set of samples, it does not show how varying NFE affects

individual sample paths. We discuss a notion of consistency next, where we analyze the

similarity between low-NFE and high-NFE samples.

Higher sample quality on a compute budget We observe that with a fixed NFE,

models trained using Multisample Flow Matching generally achieve better sample quality.

For these experiments, we draw x0 ∼ N (0, Id) and simulate vt(·, θ) up to time t = 1

using a fixed step solver with a fixed NFE. Figure 5.3 show that even on high dimensional

data distributions, the sample quality of of multisample methods improves over the näıve

CondOT approach as the number of function evaluations drops. We compare to the FID

of diffusion baseline methods in Table 5.2, and provide additional results in Appendix

B.3.3.

Table 5.1: Derived results shown in Figure 5.3, we can determine the approximate NFE required
to achieve a certain FID across our proposed methods. The baseline diffusion-based methods (e.g.
ScoreFlow and DDPM) require more than 40 NFE to achieve these FID values.

ImageNet 32×32 ImageNet 64×64
NFE @ FID = 10 NFE @ FID = 20

Diffusion ≥40 ≥40
FM w/ CondOT 20 29
MultisampleFM w/ Heuristic 18 12
MultisampleFM w/ Stable 14 11
MultisampleFM w/ BatchOT 14 12
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Table 5.2: FID (↓) of model samples on ImageNet 32×32 using varying number of function evalu-
ations (NFE) using Euler discretization.

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 19.56 16.96 5.94 7.02
20 63.08 58.02 7.71 8.66
8 232.97 218.66 15.64 14.89
6 275.28 266.76 22.08 19.88
4 362.37 340.17 38.86 33.92

NFE=400 12 8 6

Flow Matching

NFE=400 12 8 6

Multisample Flow Matching

Figure 5.4: Multisample Flow Matching trained with batch optimal couplings produces more
consistent samples across varying NFEs. Note that both flows on each row start from the same
noise sample.

Consistency of individual samples In Figure 5.4 we show samples at different NFEs,

where it can be qualitatively seen that BatchOT produces samples that are more consistent

between high- and low-NFE solutions than CondOT, despite achieving similar FID values.

To evaluate this quantitatively, we define a metric for establishing the consistency of a

model with respect to an integration scheme: let x(m) be the output of a numerical solver

initialized at x using m function evalutions to reach t = 1, and let x(∗) be a near-exact

sample solved using a high-cost solver starting from x0 as well. We define

Consistency(m) = 1
DEx∼q0∥F(x(m))−F(x(∗))∥2 (5.16)

where F(·) outputs the hidden units from a pretrained InceptionNet1, andD is the number

of hidden units. These kinds of perceptual losses have been used before to check the content

alignment between two image samples (e.g.[GEB15; JAF16]). We find that Multisample

Flow Matching has better consistency at all values of NFE, shown in Table 5.3.

1We take the same layer as used in standard FID computation.
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Table 5.3: BatchOT produces samples with more similar content to its true samples at low NFEs
(using midpoint discretization). Visual examples of this consistency are shown in Figure 5.4.

ImageNet 32×32 ImageNet 64×64
CondOT BatchOT CondOT BatchOT

Consistency(m=4) 0.141 0.101 0.174 0.157

Consistency(m=6) 0.105 0.071 0.151 0.134

Consistency(m=8) 0.079 0.052 0.132 0.115

Consistency(m=12) 0.046 0.030 0.106 0.085
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Figure 5.5: FID vs. epochs on Ima-
geNet64.

Training efficiency Figure 5.5 shows the conver-

gence of Multisample Flow Matching with BatchOT

coupling compared to Flow Matching with CondOT

and diffusion-based methods. We see that by choos-

ing better joint distributions, we obtain faster train-

ing. This is in line with our variance estimates

reported in Table B.6 and supports our hypothe-

sis that gradient variance is reduced by using non-

trivial joint distributions.

Table 5.4: Matching couplings from an oracle BatchOT solver with unknown costs. Multisample
Flow Matching is able to match the marginal distribution correctly while being at least a optimal
as the oracle, but static maps fail to preserve the marginal distribution.

2-D Cost 2-D KL 32-D Cost 32-D KL 64-D Cost 64-D KL

Cost Fn. c(x0, x1) B B-st B-fm B-st B-fm B B-st B-fm B-st B-fm B B-st B-fm B-st B-fm

∥x1 − x0∥22 0.90 0.60 0.72 0.07 4E-3 41.08 31.58 38.73 151.47 0.06 92.90 65.57 87.97 335.38 0.14

∥x1 − x0∥1 1.09 0.86 0.98 0.18 4E-3 27.92 24.51 27.26 254.59 0.08 60.27 50.49 58.38 361.16 0.16

1− ⟨x0,x1⟩
∥x0∥∥x1∥ 0.03 2E-4 3E-3 5.91 4E-3 0.62 0.53 0.58 179.48 0.06 0.71 0.60 0.68 337.63 0.12

∥A(x1 − x0)∥22 0.91 0.54 0.65 0.07 4E-3 32.66 24.61 30.13 256.90 0.06 78.70 58.11 78.50 529.09 0.19

5.6.3 Improved Batch Optimal Couplings

We further explore the usage of Multisample Flow Matching as an approach to improve

upon batch optimal solutions. Here, we experiment with a different setting, where the

cost is unknown and only samples from a batch optimal coupling are provided. In the real

world, it is often the case that the preferences of each person are not known explicitly,

but when given a finite number of choices, people can more easily find their best assign-

ments. This motivates us to consider the case of unknown cost functions, and information

regarding the optimal coupling is only given by a weak oracle that acts on finite samples,

denoted qkOT,c. We consider two baselines: (i) the BatchOT cost (B) which corresponds to

EqkOT,c(x0,x1)
[c(x0, x1)], and (ii) learning a static map that mimics the BatchOT couplings

(B-ST) by minimizing the following objective:

EqkOT,c(x0,x1)
∥x1 − ψθ(x0)∥2 . (5.17)
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Figure 5.7: Transport cost vs. batch size (k) for computing couplings on the 64D synthetic dataset.
The number of samples used for performing gradient steps during training and the resulting KL
divergences were kept the same.

This can be viewed as learning the barycentric projection [Fer+14; Seg+17], i.e.ψ∗(x0) =

EqkOT,c(x1|x0)
[x1], a well-studied quantity but is known to not preserve the marginal distri-

bution [Fat+20].

Figure 5.6: 2D densities on the 8-Gaussians target distribu-
tion. (Left) Ground truth density. (Right) Learned densi-
ties with static maps in the top row and Multisample Flow
Matching dynamic maps in the bottom row. Models within
each column were trained using batch optimal couplings
with the corresponding cost function.

We experiment with 4 dif-

ferent cost functions on three

synthetic datasets in dimensions

{2, 32, 64} where both q0 and q1

are chosen to be Gaussian mix-

ture models. In Table 5.4 we re-

port both the transport cost and

the KL divergence between q1 and

the distribution induced by the

learned map, i.e.[ψ1]♯q0. We ob-

serve that while B-ST always re-

sults in lower transport costs com-

pared to B-FM, its KL divergence is always very high, meaning that the pushed-forward

distribution by the learned static map poorly approximates q1. Another interesting obser-

vation is that B-FM always reduces transport costs compared to B, providing experimental

support to the theory (Theorem 11).

Flow Matching improves optimality Figure 5.7 shows the cost of the learned model

as we vary the batch size for computing couplings, where the models are trained sufficiently

to achieve the same KL values as reported in Table 5.4. We see that our approach decreases

the cost compared to the BatchOT oracle for any fixed batch size, and furthermore, con-

verges to the OT solution faster than the batchOT oracle. Thus, since Multisample Flow

Matching retains the correct marginal distributions, it can be used to better approximate

optimal transport solutions than simply relying on a minibatch solution.



Chapter 6

Differentiating through Flows for

Controlled Generation

Controlled generation from generative priors is of great interest in many domains. Various

problems such as conditional generation, inverse problems, sample editing, etc., can all be

framed as a controlled generation problem. In this chapter, we explore controlled gener-

ation from diffusion/flow generative prior [SE19; HJA20; Lip+23] as they are the central

research paradigm in this study, as well as being the current state-of-the-art generative

approaches across various data modalities.

In [Ben+24] we introduce a framework for adding controlled generation to a pre-

trained Diffusion or Flow-Matching (FM) model based on differentiation through the ODE

sampling process. Our key observation is that for Diffusion/FM models trained with

standard Gaussian probability paths, differentiating an arbitrary loss L(x) through the

generation process of x with respect to the initial point, x0, projects the gradient ∇xL onto

the “data manifold”, i.e., onto major data directions at x, implicitly injecting a valuable

prior. Based on this observation we advocate a simple general algorithm that minimizes an

arbitrary cost function L(x), representing the desired control, as a function of the source

noise point x0 used to generate x.

6.1 Motivation and Contributions

Controlled generation from diffusion/flow models can be roughly classified to three main

approaches: (i) conditional training, where the model receives the condition as an addi-

tional input during training [Son+21b; DN21; HS21], although performing very well this

approach requires task specific training of a generative model which in cases may be pro-

hibitive; (ii) training-free approaches that modify the generation process of a pre-trained

model, adding additional guidance [Bar+23; Yu+23]. The guidance is usually built upon

strong assumptions on the generation process that can lead to errors in the generation and

mostly limit the method to observations that are linear in the target [Kaw+22; Chu+22;

Son+23a; Pok+23]; lastly, (iii) adopt a variational perspective, framing the controlled

generation as an optimization problem [Gra+22; Mar+23; Wal+23; Sam+23b], requiring

60
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only a differentiable cost to enforce the control. This paper belongs to this third class.

The goal of this paper is to introduce a framework for adding controlled generation

to a pre-trained Diffusion or Flow-Matching (FM) model based on differentiation through

the ODE sampling process. Our key observation is that for Diffusion/FM models trained

with standard Gaussian probability paths, differentiating an arbitrary loss L(x) through

the generation process of x with respect to the initial point, x0, projects the gradient

∇xL onto the “data manifold”, i.e., onto major data directions at x, implicitly injecting

a valuable prior. Based on this observation we advocate a simple general algorithm that

minimizes an arbitrary cost function L(x), representing the desired control, as a function

of the source noise point x0 used to generate x. That is,

min
x0

L(x). (6.1)

Differentiating through a generator of a GAN or a normalizing flow was proven gener-

ally useful for controlled generation [Bor+17; Asi+20; WLD21] and counterfactual exam-

ples [DGK21; Dom+24]. Recently, [Wal+23; Sam+23b] have been suggesting to differen-

tiate through a discrete diffusion solver for the particular tasks of incorporating classifier

guidance and generating rare concepts. In this paper we generalize this idea in two ways:

(i) we consider general flow models trained with Gaussian probability paths, including

Diffusion and Flow-Matching models; and (ii) we demonstrate, both theoretically and

practically, that the inductive bias injected by differentiating through the flow is applica-

ble to a much wider class of problems modeled by general cost functions.

We experiment with our method on a variety of settings and applications: Inverse

problems on images using conditional ImageNet and text-2-image (T2I) generative priors,

conditional molecule generation with QM9 unconditional generative priors, and audio

inpainting and super-resolution with unconditional generative prior. In all application we

were able to achieve state of the art performance without carefully tuning the algorithm

across domains and applications. One drawback of our method is the relative long time for

generation (usually 5− 15 minutes on ImageNet-128 on an NVidia V100 GPU) compared

to some baselines, however the method’s simplicity and its superior results can justify its

usage and adaptation in many use cases. Furthermore, we believe there is great room for

speed improvement.

To summarize, our contributions are:

• We formulate the controlled generation problem as a simple source point optimiza-

tion problem using general flow generative models.

• We show that source point optimization of flows trained with Gaussian probability

paths inject an implicit bias exhibiting a data-manifold projection behaviour to the

cost function’s gradient.

• We empirically show the generality and the effectiveness of the proposed approach

for different domains.
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Distorted Initial x(1) step 2 step 4 step 6 step 8 step 10 step 12 GT

Figure 6.1: Intermediate x(1) during optimization. Given a distorted image and randomly initial-
ized x0 defining the initial x(1), our optimization travels close to the natural image manifold passing
through in-distribution images on its way to the GT sample from the face-blurred ImageNet-128
validation set.

6.2 Controlled Generation via Source Point Optimization

Our method considers generative flow models, including Continuous Normalizing Flows

(CNFs) [Che+18; Lip+23] and (deterministic sampling of) Diffusion Models [Son+21b].

These models generate samples x(1) ∈ Rd by first sampling from some source (noise)

distribution x(0) ∼ p0(x0) and then solving an Ordinary Differential Equation (ODE),

ẋ(t) = ut(x(t)), (6.2)

from time t = 0 to time t = 1, using a predetermined velocity field u : [0, 1] × Rd → Rd.

We denote by p1 the distribution and density function of x(1) given x(0) ∼ p0(x0).

Given a pre-trained (frozen) flow model, ut(x), represented by a neural network and

some cost function L : Rd → R+, our goal is to find likely samples x that provide low

cost L(x) and are likely under the flow model’s distribution p1. We advocate a general

framework formulating this problem as the following optimization problem

min
x0

L(x(1)), (6.3)

where in general L can also incorporate multiple costs including potentially a regularization

term that can depend on x0 and u,

L̃(x) = L(x) +R(x0, u). (6.4)

In this formulation, the sample x(1) is constrained to be a solution of the ODE equa-

tion 6.2, with initial boundary condition x(0) = x0, where x0 is the only optimized quantity

and L is the desired cost function.

Optimizing equation 6.3 is done by computing the gradients of the loss w.r.t. the

optimized variable x0 as listed in Algorithm 1. We call this method D-Flow. To better

understand the generality of this framework we next consider several instantiations of

equation 6.3.
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6.2.1 Cost Functions

Reversed sampling. First, consider the simple case where L(x) = ∥x− y∥2. In this

case, the solution of 6.3 will be the x0 that that has an ODE trajectory that reaches y at

t = 1, i.e., x(1) = y. Note that since (under some mild assumptions on ut(x)) equation 6.2

defines a diffeomorphism Rd → Rd, for an arbitrary y ∈ Rd, there exists a unique solution

x0 ∈ Rd to equation 6.3.

Inverse problems. In this case we have access to some known corruption function

H : Rd → Rn and a corrupted sample from an unknown ground truth signal x∗,

y = H(x∗) + ϵ, (6.5)

where ϵ ∼ N (ϵ) is an optional additive noise. The goal is to recover an x that produces y

and the cost function is usually

L(x) = ∥H(x)− y∥2 , (6.6)

where the norm can be some arbitrary Lp norm or even a general loss ℓ(H(x), y) comparing

H(x) and y. Specific choices of the corruption functionH can lead to common applications:

Image inpainting corresponds to choosing the corruption function H to sub-sample known

n < d pixels out of d total pixels; Image deblurring corresponds to taking H : Rd → Rd

to be a blurring function, e.g., a convolution with a blurring kernel; Super-resolution

corresponds to H : Rd → Rd/k lowering the dimension by a factor of k.

Conditional sampling. Another important application is to guide the sampling process

to satisfy some condition y. In this case, we can take L(x) to encourage a classifier or

some energy function to reach a particular class or energy y. For example, let F : Rd → R
and we would like to generate a sample from a certain level set c ∈ R we can use the loss

L(x) = (F(x)− c)2 . (6.7)

6.2.2 Initialization

The initialization of x0 can have a great impact on the convergence of the optimization

of equation 6.3. A natural choice will be to initialize x0 with a sample from the source

distribution p0(x0). We find that for cases when an observed signal y provides a lot of

information about the desired x, one can improve the convergence speed of the optimiza-

tion. For example, in linear inverse problems on images, where the observed y has a strong

prior on the structure of the image, it is beneficial to initialize x0 with a blend of a sample

from the source distribution and the backward solution of the ODE from t = 1 to t = 0:

x0 =
√
α · y(0) +

√
1− α · z, (6.8)

where z ∼ p0(x0) and y(0) = y +
∫ 0
1 u(t, y(t))dt.
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6.2.3 Regularizations

The formulation in equation 6.3 allows including different regularizations R (equation 6.4)

discussed next. Maybe the most intriguing of these regularizations, and the main point

of this paper, is the implicit regularization, i.e., corresponding to R ≡ 0, discussed last in

what follows.

Regularizing the target x(1). Maybe the most natural is incorporating the negative

log likelihood (NLL) of the sample x(1), i.e., R = − log p1(x(1)) in equation 6.4. This

prior can be incorporated by augmenting x(t) ∈ Rd with an extra coordinate z ∈ R and

formulate equation 6.3 as

min
x0

L(x(1))− z(1) (6.9a)

s.t. ẋ(t) = ut(x(t)), x(0) = x0 (6.9b)

ż(t) = −div ut(x(t)), z(0) = log p0(x0) (6.9c)

BPD=2.02 BPD=1.84

Figure 6.2: BPD of two
images in an ImageNet-128
model.

Indeed, solving the ODE system defined by equations 6.9b

and 6.9c for times t ∈ [0, 1] provides z(1) = log p1(x(1)), see

[Che+18]. However, aside from the extra complexity intro-

duced by the divergence term in the ODE in equation 6.9c

(see e.g., [Gra+19] for ways to deal with this type of ODE)

it is not clear whether likelihood is a good prior in deep

generative models in high dimensions [Nal+19]; In Figure

6.2 we compare bits-per-dimension (BPD) of a test image of

ImageNet-128 and a masked version of this image, providing a more likely image according

to our flow model trained on ImageNet.

Regularizing the source x(0) = x0. Another option is to regularize the source point

x(0) = x0. The first choice would again be to incorporate the NLL of the noise sample,

i.e., R = − log p0(x0), which for standard noise p0(x0) = N (x0|0, I) would reduce to

R = c+ 1
2 ∥x0∥

2, where c is a constant independent of x0. This however, would attract x0

towards the most likely all zero mean but far from most of the probability mass at norm√
d.

Following [Sam+23a] we instead prefer to make sure x0 stays in the area where most

mass of p0 is concentrated and therefore use the χd distribution, which is defined as the

probability distribution p(r) of the random variable r = ∥x0∥ where x0 ∼ N (x0|0, I) is

again the standard normal distribution. The NLL of r in this case is

R = − log p(r) = c+ (d− 1) log ∥x0∥ −
∥x0∥2

2
, (6.10)

where c is a constant independent of x0.
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Implicit regularization. Maybe the most interesting and potentially useful regular-

ization in our formulation (equation 6.3) comes from the choice of optimizing the cost

L(x(1)) as a function of the source point x(0) = x0. For standard diffusion/flow models

that are trained to zero loss:

Optimizing the cost L(x(1)) with respect to x0 follows the data distribution p1(x1) by

projecting the gradient ∇x(1)L(x(1)) with the local data covariance matrix.

∇x1L(x(1))
p1(x1)

x(1)δx(1)

Figure 6.3: Implicit bias in differenti-
ating through the solver.

This is intuitively illustrated in Figure 6.3: while

moving in direction of the gradient ∇x(1)L(x(1)) gen-
erally moves away from the data distribution (in

pink), differentiating w.r.t. x(0) projects this gradi-

ent onto high variance data directions and conse-

quently staying close to the data distribution. To

exemplify this phenomena we show in Figure 6.1 op-

timization steps x(0)(1), x(2)(1), x(4)(1), . . . of a loss

L(x) = ∥H(x)−H(x∗)∥2, where H is a linear ma-

trix that subsamples a (random) subset of the image’s

pixels consisting of 90% of the total number of pixels,

and x∗ is a target image (different from the initial x(0)(1)). The sampling process here is

using an ImageNet trained flow model with the class condition ‘bulbul’. As can be seen

in this sequence of images, the intermediate steps of the optimization stay close to the

distribution and pass through different sub-species of the bulbul bird. In the next section

we provide a precise mathematical statement supporting this claim but for now let us

provide some intuitive explanation.

6.2.4 Practical Implementation

The practical implementation of Algorithm 1 requires three algorithmic choices. First, one

needs to decide how to initialize x0. In all experiments we either initialize x0 as a sample

from the source distribution, i.e., normal Gaussian, or we use a variance preserving blend

of a normal Gaussian with the backward solution from t = 1 to t = 0 of the observed signal

when possible. Second, we need to choose the solver used to parameterize x(1). To this end

we utilize the torchdiffeq package [Che18], providing a wide class of differentiable ODE

solvers. Backpropagating through the solver can be expensive in memory and we therefore

use gradient checkpointing to reduce memory consumption at the cost of runtime. In most

of our experiments we use the midpoint method with 6 function evaluations. Lastly, we

need to choose the optimizer for the gradient step. Since the optimization we perform is

not stochastic we choose to use the LBFGS algorithm with line search in all experiments.

The runtime of the optimization depends on the problem but typically ranges from 5− 15

minutes per sample. For large text-2-image and text-2-audio models run times are higher

and can reach 30− 40 minutes.
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Algorithm 1 D-Flow Algorithm.

input : condition y, cost L, pre-trained flow model ut(x)

Initialize x
(0)
0 ← Init(y) ; ▷ Initialize source point

for i = 1, . . . , N do

x(i)(1)← solve(x
(i)
0 , ut) ; ▷ Solve ODE numerically

x
(i+1)
0 ← optimize step(x

(i)
0 ,∇x0L(x(i)(1))) ; ▷ Gradient descent step

end
output: xN (1)

6.3 Optimization Dynamics Analysis

In this section we provide the theoretical support to the implicit regularization claim

made in the previous section. First, we revisit the family of Affine Gaussian Probability

Paths (AGPP) taking noise to data that are used to supervise diffusion/flow models.

When diffusion/flow models reach zero loss they reproduce these probability paths and

we will therefore use them to analyze the implicit bias. Second, we use the method of

adjoint dynamics to provide an explicit formula for the gradient ∇x0L(x(1)) under the

AGPP assumption, and consequently derive the variation in x(1). Lastly, we interpret

this variation to demonstrate why it is pointing in the direction of the data distribution.

Affine Gaussian probability paths. Diffusion and recent flow based models use Affine

Gaussian Probability Path (AGPP) to supervise their training. In particular, denoting

p0 = N (0, σ20I) the Gaussian noise (source) distribution and p1 data (target) distribution,

an AGPP is defined by

pt(x) =

∫
pt(x|x1)p1(x1)dx1, (6.11)

where pt(x|x1) = N (x|αtx1, σ
2
t I) is a Gaussian kernel and αt, σt : [0, 1]→ [0, 1] are called

the scheduler, satisfying α0 = 0, σ1 ≈ 0, and α1 = 1 = σ0, consequently guaranteeing that

pt interpolates (exactly or approximately) the source and target distributions at times

t = 0 and t = 1, respectively. The velocity field that generates this probability path and

coincide with the velocity field trained by diffusion/flow models at zero loss is [Sha+23]

ut(x) =

∫
[atx+ btx1] pt(x1|x)dx1 (6.12)

where using Bayes’ Theorem

pt(x1|x) =
pt(x|x1)p1(x1)

pt(x)
, (6.13)

and

at =
σ̇t
σt
, bt = α̇t − αt

σ̇t
σt
. (6.14)

One can also simplify the integral in equation 4.4 and write the marginal velocity field

in terms of the denoiser [Kar+22], x̂1|t(x) =
∫
x1pt(x1|x)dx1:

ut(x) = atx+ btx̂1|t(x) (6.15)
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which for AGPP possesses a useful property we will use in Theorem 7, stated in the

following proposition (proof in Appendix A.4.1):

Proposition 1. For AGPP, the gradient of the denoiser x̂1|t(x) w.r.t x is proportional to

the variance of the random variable defined by pt(x1|x), formally:

Dxx̂1|t(x) =
αt

σ2t
Var1|t(x) (6.16)

where

Var1|t(x) = Ept(x1|x)
[
x1 − x̂1|t(x)

] [
x1 − x̂1|t(x)

]T
(6.17)

Differentiating through the solver. When diffusion/flow models are optimized to a

minimal loss they perfectly reproduce the AGPP velocity field, i.e., equation 4.4 [Lip+23].

For this velocity field we begin with an analysis of the differential of a solution (sample)

Dx0x(1) for the continuous time exact case and a discrete time approximation.

Theorem 7. For AGPP velocity field ut (see equation 4.4) and x(t) defined via equa-

tion 6.2 the differential of x(1) as a function of x0 is

Dx0x(1) = σ1T exp

[∫ 1

0
γtVar1|t(x(t))dt

]
, (6.18)

where T exp[·] stands for a time-ordered exponential, γt = 1
2

d
dtsnr(t) and we define

snr(t) =
α2
t

σ2
t
.

The proof is given in Appendix A.4.2. In the exact case where σ1 = 0 we also have∫ 1
0 γtdt = ∞, nevertheless we show in Appendix A.4.2 that Dx0x(1) is the time-ordered

exponential of a bounded time-dependent matrix. While a closed form expression to this

integral is unknown, we note that the matrix-vector product Dx0x(1)v corresponds to an

infinite sum of powers of the matrices γtVar1|t(x(t)) applied to v.

To gain better intuition and align our theory with practice, where discrete ODE solvers

are used to obtain x(1), we will now analyze the discrete time solver case. Let us consider

an Euler ODE solver with N uniform steps of size h = 1
N , then the differential of x(1) as

a function of x0 is:

Dx0x(1) =

N−1∏
m=0

(
(1 + hamh)I + hγmhVar1|mh(xmh)

)
, (6.19)

note that the product is a time-ordered product, with m decreasing from right to left

(derivation in Appendix A.4.3). The form of equation 6.19, consisting of powers of

Var1|t(x), provides insights as to why D-Flow works even with a low number of solver

steps. Intuitively, the vector-matrix multiplication Var1|t(x)v projects v on the major

axes of the distribution of the data conditioned on x. As we will soon see, Dx0x(1) is key

to understanding the implicit bias claim.
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The dynamics of x(1). Consider an optimization step updating the optimized variable

x0 with a gradient step, i.e., xτ0 = x0 − τ∇x0L(x(1)), where the gradient ∇x0L(x(1)) can
be now computed with the chain rule and equation 6.18,

∇x0L(x(1)) = Dx0x(1)
T∇x(1)L(x(1)), (6.20)

We can now ask: How is the sample x(1) changing infinitesimally under this gradient step?

Denote by Ψ : Rd → Rd the map taking initial conditions x0 to solutions of equation 6.2

at t = 1, i.e., Ψ(x0) = x(1). The variation of x(1) is

δx(1) =
d

dτ

∣∣∣
τ=0

Ψ(x0 − τ∇x0L(x(1)))

= −
[
Dx0x(1)Dx0x(1)

T
]
∇x(1)L(x(1)),

where the first equality is the definition of variation and the second equality is using

chain rule and equation 6.20. Indeed, the dynamics of x(1) follow the projection of the

gradient ∇x(1)L(x(1)) with the operator Dx0x(1) that iteratively applies projection by the

covariance matrix Var1|t(x(t)) at different times t (equations 6.18 and 6.19).

6.4 Related Work

Inverse Problems. A new line of works alter the diffusion generation process for

training-free solutions of inverse problems. Most works can be viewed as building guid-

ance strategies to the generation process of diffusion models. [Kaw+22] takes a variational

approach deriving a solver for linear inverse problems. Similarly, [Chu+22; WYZ23] mod-

ify the generation process by enforcing consistency with the observations either via cost

functions or projections [Cho+21; WYZ23; Lug+22]. Other approaches guide the sam-

pling process with derivatives through the diffusion model at each denoising step [Ho+22;

Chu+23; Son+23a; Pok+23]. A recent work by [Rou+23] extends the ideas for latent diffu-

sion models by chained applications of encoder-decoder. Similar to our approach [Mar+23]

performs optimization of a reconstruction loss with score matching regularization.

Conditional sampling. Conditional sampling from diffusion models can be achieved

by training an additional noise-aware condition predictor model [Son+21b] or by incorpo-

rating the condition into the training process [DN21; HS21]. These approaches however

require task specific training. Plug-and-play approaches, on the other hand, utilize a pre-

trained unconditional generative model as a prior. [Gra+22] perform constrained genera-

tion via optimization of a reconstruction term regularized by the diffusion loss. [Liu+23b]

seeks for optimal control optimizing through the generation process to learn guiding con-

trols. Our method formulates a similar optimization problem like earlier works on GANs

[Bor+17] and normalizing flows [Asi+20; DGK21; Chá22]. While [Asi+20] provides an

analysis of a simplified linear model, [DGK21] analyzes the manifold preserving proper-

ties of diffeomorphic generative models. Our work provides a novel theoretical analysis

of the gradient of differentiable functionals with respect to initial values of diffusion/flow
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Table 6.1: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128.

Inpainting-Center Super-Resolution X2 Gaussian deblur

Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
σy = 0

ΠGDM [Son+23a] 5.73 0.096 36.89 0.908 6.01 0.104 34.31 0.911 4.27 0.066 37.61 0.961

OT-ODE [Pok+23] 5.65 0.094 37.00 0.893 4.28 0.097 33.88 0.903 2.04 0.048 37.44 0.959

RED-Diff [Mar+23] 5.40 0.068 38.91 0.928 3.05 0.091 33.74 0.900 1.62 0.055 35.18 0.937

Ours 4.14 0.072 37.67 0.922 2.50 0.069 34.88 0.924 2.37 0.035 39.47 0.976

σy = 0.05

ΠGDM [Son+23a] 7.99 0.122 34.57 0.867 4.38 0.148 32.07 0.831 30.30 0.328 29.96 0.606

OT-ODE [Pok+23] 6.25 0.119 35.01 0.882 4.61 0.149 32.59 0.862 4.84 0.175 31.94 0.821

RED-Diff [Mar+23] 14.63 0.171 32.42 0.820 10.54 0.182 31.82 0.852 21.43 0.229 31.41 0.807

Ours 4.76 0.102 34.609 0.890 4.26 0.146 32.35 0.858 5.35 0.167 31.99 0.820

generative processes with affine Gaussian paths. Our analysis unravels a fresh perspective

on the implicit regularization implemented by differentiating through the generation pro-

cess, even with a few number of steps (Appendix A.4.3), that aligns with the denoising

attributes of diffusion/flow models. We note that using gradients through the solver for

the case of discrete diffusion models was first used by [Wal+23] for classifier guidance and

by [Sam+23b] to generate rare samples.

6.5 Experiments

We test D-Flow on the tasks: linear inverse problems on images, inverse problems with

latent flow models and conditional molecule generation. For all the inverse problems

experiments, where the observed signal provides structural information, we use a blend

initialization to our algorithm speeding up convergence and often improving performance.

Furthermore, in most experiments we find that there is no need in adding an explicit

regularizing term in the optimization. The only cases where we found regularization helpful

was in the noisy case for linear inverse problems and molecule generation. Additional

details are in Appendix B.4.1.

6.5.1 Linear Inverse Problems on Images

We validate our method on standard linear inverse problems with a known degradation

model on images. The tasks we consider are center-crop inpainting, super-resolution and

Gaussian deblurring both in the noiseless and noisy case. In all cases we stop the opti-

mization at a task dependent target PSNR. For the noisy case we choose the target PSNR

to be the PSNR corresponding to the known added noise.

Tasks. We follow the same settings as in [Pok+23]: (i) For center-crop inpainting,

we use a 40 × 40 centered mask; (ii) for super-resolution we use bicubic interpolation to

downsample the images by ×2; and lastly (iii) for Gaussian deblur we apply a Gaussian

blur kernel of size 61×61 with intensity 1. For each task we report results for the noiseless

and noisy (Gaussian noise of σy = 0.05, see equation 6.5) cases. Further implementation

details can be found in the Appendix B.4.1.
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Distorted GT Ours RED-Diff OT-ODE ΠGDM Distorted GT Ours RED-Diff OT-ODE ΠGDM

Figure 6.4: Qualitative comparison for linear inverse problems on ImageNet-128. GT samples from
ImageNet-128 validation.

Metrics. Following the evaluation protocol of prior works [Chu+22; Kaw+22]

we report Fréchet Inception Distance (FID) [Heu+17], Learned Perceptual Image Patch

Similarity (LPIPS) [Zha+18], peak signal-to-noise ratio (PSNR), and structural similarity

index (SSIM).

Datasets and baselines. We use the face-blurred ImageNet-128 dataset and report

our results on the 10k split of the face-blurred ImageNet dataset used by [Pok+23]. We

compare our method to three recent state of the art methods: ΠGDM [Son+23a], OT-

ODE [Pok+23] and RED-Diff [Mar+23]. We use the implementation of [Pok+23] for all

the baselines. All methods, including ours, are evaluated with the same Cond-OT flow-

matching class conditioned model trained on the face-blurred ImageNet-128 unless the

reults we produced were inferior to the ones reported in [Pok+23]. In that case, we use

the reported numbers from [Pok+23].

Results. As shown in Table 6.1, our method shows strong performance across all

tasks, Figure 6.4 shows samples for each type of distortion. For inpainting and super-

resolution our method improves upon state of the art in most metrics. We believe that

our method’s ability to reach images with higher fidelity to the ground truth is attributed

to the source point optimization, which, differently from guided sampling approaches such

as [Son+23a; Pok+23], iteratively correct the sampling trajectory to better match the

observed signal. We further note that compared to RED-Diff, which is also an optimization

approach, our method does not struggle in the noisy case and achieves SOTA performance.

We show more samples in Figures B.14,B.15.

6.5.2 Inverse Problems with Latent Flow Models

Image Inpainting

We demonstrate the capability of our approach for non-linear inverse problems by applying

it to the task of free-form inpainting using a latent T2I FM model.

Metrics. To quantitatively assess our results we report standard metrics used in T2I

generation: PSNR, FID [Heu+17], and Clip score [Ram+22].

Datasets and baselines. The T2I model we use was trained on a proprietary
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Table 6.2: Quantitative evaluation of free-form inpainting on MS-COCO with T2I latent model.

Inpainting-Free-Form

Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ Clip score ↑
RED-Diff [Mar+23] 23.31 0.327 33.28 0.813 0.882

Ours 16.92 0.327 32.34 0.759 0.892

Table 6.3: Quantitative evaluation of music generation with latent flow models.

Inpainting (10%) Inpainting (20%) Super-Resolution X2 Super-Resolution X4 Super-Resolution X8

Method FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑

In-domain

RED-Diff [Mar+23] 0.75 31.19 0.78 29.99 0.93 35.27 1.63 33.51 1.73 29.12

Ours 0.22 31.02 0.49 29.57 0.22 44.51 0.50 42.64 1.01 36.50

MusicCaps

RED-Diff [Mar+23] 3.59 32.81 3.72 30.39 3.07 37.13 3.51 34.99 3.97 30.49

Ours 1.19 31.78 1.31 31.08 1.25 38.93 1.42 35.83 2.09 32.20

dataset of 330m image-text pairs. It was trained on the latent space of an autoencoder as

in [Rom+22a]. The architecture is based on GLIDE [Nic+22] and uses a T5 text encoder

[Raf+23]. We evaluate on a subset of 1k samples from the validation set of the COCO

dataset [Lin+15]. We compare our method to RED-Diff [Mar+23] as it is also not limited

to linear inverse problems like the other baselines we used in the previous section. We

tested different hyper-parameters for RED-Diff and report results with the best.

Results. Table 6.2 reports metrics for the baseline and our method. The metrics

indicate that while RED-Diff better matches the unmasked areas, achieving superior per-

formance for structural metrics (PSNR, SSIM) our method produces more semantically

plausible image completion winning in perceptual metrics. We do observe that RED-Diff

often produces artifacts for this task. Results are visualized in Figure B.16.

Audio Inpainting and Super-Resolution

We evaluate our method on the tasks of music inpainting and super-resolution, utilizing a

latent flow-matching music generation model. For this, we used a trained Cond-OT flow-

matching text conditioned model with a transformer architecture of 325m parameters that

operates on top of EnCodec representation [Déf+23]. The model’s performance aligns with

the current state-of-the-art scores in text-conditional music generation, achieving a Fréchet

Audio Distance (FAD) score of 3.13 [Kil+18] on MusicCaps and FAD of 0.72 on in-domain

data. The model is trained to generate ten-seconds samples. In the following, we evaluate

the performance of inpainting and super-resolution using our method and RED-Diff as

baseline, we report FAD and PSNR metrics.

Datasets and baselines. For evaluation, we use the MusicCaps benchmark, which

comprises of 5.5K pairs of music and a textual description and an internal (in-domain)

evaluation set of 202 samples, similar to [Cop+23; Ziv+24]. Similar to prior work, we

compute FAD metric using VGGish. We compare our method to RED-Diff [Mar+23].

Results. Table 6.3 studies our method in inapinting and super resolution tasks. This

experiment demosntrates the ability of our method to work in non-linear setup, where the

flow model is trained over a neural representation and the cost function is evaluated on
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52.22 63.60 72.63 79.36 81.33 88.88 95.13 102.40

Figure 6.5: Qualitative visualization of controlled generated molecules for various polarizability
(α) levels.

the post-decoded signal (neural representation after decoding). In the inpainting task, we

center crop the signal by 10% and 20%, i.e., for a ten-seconds signal, we mask out two

and four seconds respectively. In the super-resolution task we upscale a signal by factors

of two, four, and eight,i.e., from 4kHz, 8kHz, 16kHz to 32kHz respectively. Overall, our

method improves upon the baseline. Specifically, in all experiments, our method obtain

the lowest FAD metric. In the inpainting task our method obtains a slightly lower PSNR

from the baseline. Audio samples are attached in a supplementray material. Additional

implementation details appear in Appendix B.4.1.

6.5.3 Conditional Molecule Generation on QM9

In this experiment we illustrate the application of our method for controllable molecule

generation, which is of practical significance in the fields of material and drug design. The

properties targeted for conditional generation (c in equation 6.7) include polarizability α,

orbital energies εHOMO, εLUMO and their gap ∆ε, Diople moment µ, and heat capacity

Cv. To assess the properties of the molecules generated, we used a property classifier (F in

equation 6.7) for each property. Those classifiers were trained following the methodology

outlined in [Hoo+22]. Further details are in Appendix B.4.1.

Metrics. To assess conditional generation, we calculate the Mean Absolute Error

(MAE) between the predicted property value of the generated molecule by the property

classifier, [Sat+22], and the target property value. According to the conditional training

protocol from [Hoo+22], the property classifier is trained over half of the QM9 train set

(50K) while the remaining half is used for training the conditional generative models.

Additionally, we appraise the quality of the generated molecules by evaluating atom sta-

bility (the percentage of atoms with correct valency), molecule stability (the percentage

of molecules where all atoms are stable), validity (as defined in RDKit [Lan16]), and the

uniqueness of the generated molecules.

Dataset and baselines. The generative models used for this experiment are trained

using the QM9 dataset [Ram+14], a commonly used molecular dataset containing small

molecules with up to 29 atoms. The model we use as prior in these experiments is an un-

conditional equivariant Flow-Matching model with CondOT path [Lip+23], trained on the

train set half used in [Hoo+22] for conditional training. We compare our method to sev-

eral state of the art conditional models: conditional EDM, Equivariant Flow-Matching

(EQUIFM) [Son+23b], and Geometric Latent Diffusion Model (GEOLDM)[Xu+23] an

equivariant latent diffusion model. Additionally, we report the test MAE of each property

classifier (denoted as QM9∗ in Table 6.4), which serves as an empirical lower bound. It is
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Table 6.4: Quantitative evaluation of conditional molecule generation. Values reported in the table
are MAE (over 10K samples) for molecule property predictions (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr2 meV meV meV D cal
molK

QM9∗ 0.10 64 39 36 0.043 0.040

EDM 2.76 655 356 584 1.111 1.101

EQUIFM 2.41 591 337 530 1.106 1.033

GEOLDM 2.37 587 340 522 1.108 1.025

Ours 1.39 344 182 330 0.300 0.784

Table 6.5: Stability and validity evaluation of D-flow on conditional molecule generation (10K
samples).

Property α ∆ε εHOMO εLUMO µ Cv

Molecule Stability (%) 56.2 59.4 60.2 59.4 60.7 57.9

Atom Stability (%) 93.6 93.9 94.1 93.8 94.2 93.6

Validity (%) 77.4 79.4 80.2 79.4 81.1 78.9

Validity & Uniqueness (%) 77.4 79.4 80.2 79.4 81.1 78.9

important to note that for each specific property of conditional generation, the baseline

methods utilized a distinct conditional model, each individually trained for generating

that particular property while we used a single unconditional model.

Results. Table 6.4 demonstrates that our approach significantly outperforms all other

baseline methods in the quality of conditional molecule generation. This superior perfor-

mance is attributed to our direct optimization of the conditional generation. Table 6.5

presents the stability and validity metrics for our method. In comparison with conditional

EDM, which achieves an average molecular stability of 82.1% across different properties,

our method reveals a disparity in the stability of the generated molecules. This gap

is a consequence of two factors. First, the trained Flow Matching unconditional model

achieved inferior performance compared to EDM reaching molecular stability of 72.2%.

Second, the optimization with respect to the property predictor does not achieve the same

quality of generation as regular sampling. We further verify that the gain in MAE that

D-Flow presents is not due to the degradation in the percentage of stable molecules and

report both MAE values for stable and non-stable molecules withing the 10k generated

sample, in Table B.11. The MAE values for both stable and non-stable molecules are on

par and improve by a large margin the existing baselines. Figure 6.5 visualize the con-

trolled generation for different polarizability α values; all molecules in the figure are valid

and stable with a classifier error lower than 1.
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Chapter 7

Discussion and Conclusions

This thesis has introduced several innovative methods addressing fundamental challenges

in generative modeling. Our primary focus has been on Continuous Normalizing Flows, en-

hancing their scalability for high-dimensional data and extending their application beyond

traditional generative modeling into fields like optimal transport and controlled generation.

In the first part of this dissertation, we devised simulation-free methods for CNF train-

ing, notably through Probability Path Matching and Flow Matching. These simulation-

free approaches allow CNFs to scale more effectively and reduce the computational load

associated with standard training procedures, making them viable for higher-dimensional

data.

In Probability Path Matching (PPM), we built a framework for matching a target

density path and the density path generated by a CNF. The PPM is based on minimizing

a novel Probability Path Divergence (PPD) that does not require sampling of model

densities and, therefore, is easier to train and apply to manifolds. The PPD is shown to

upper bound standard divergences and can work with a rather flexible family of target

paths on manifolds. Empirically, PPM was shown to facilitate CNF training, scaling for

the first time to manifolds of moderate dimension, improving training time, and producing

state-of-the-art samplings and log-likelihoods.

At the time of publication, our work achieved state-of-the-art performance on the

tasks of generative modeling on manifolds and was the first method to apply to high-

dimensional manifolds. The main drawback of the PPD was that the approximation of

log pt(x) introduced bias, and it required the evaluation of the divergence of the velocity

field. In our next work, Flow Matching, we proposed an alternative CNF training approach

via simple velocity field regression that also matches probability paths by matching the

flow and is unbiased.

Flow Matching (FM) relies on conditional constructions to effortlessly scale to very

high dimensions. Furthermore, the FM framework provides an alternative view on diffu-

sion models, and suggests forsaking the stochastic/diffusion construction in favor of more

directly specifying the probability path, allowing us to, e.g., construct paths that allow

faster sampling and/or improve generation. We experimentally showed the ease of train-

ing and sampling when using the Flow Matching framework. Since published, the flow
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matching framework has been widely adopted by the research community for large-scale

applications such as text-2-image and video generation, as well as generative tasks for

molecular and biological data.

In the second part of the thesis, we introduced generalizations and extensions of the

flow matching as a generative paradigm. We first proposed Multisample Flow Matching.

While most prior works make use of training algorithms where data and noise samples

are sampled independently, Multisample Flow Matching allows the use of more complex

joint distribution. This introduces a new approach to designing probability paths. Our

framework increases sample efficiency and sample quality when using low-cost solvers.

Unlike prior works, our training method does not rely on simulation of the learned velocity

field during training and does not introduce any min-max formulations. We also note that

our method of fitting to batch optimal couplings is the first to preserve the marginal

distributions, an important property in both generative modeling and solving transport

problems.

Finally, we presented a simple and general framework for controlled generation from

pre-trained diffusion/flow models and demonstrated its efficacy on a wide range of prob-

lems from various domains and data types ranging from images, and audio to molecules.

The main limitation of our approach is in its relatively long runtimes (see Section 6.2.4,

and Appendix B.4.1) which stems from the need to back-propagate through multiple com-

positions of the velocity field (equivalently, the diffusion model). Our theoretical analysis

and empirical evidence show however that computing gradients through the ODE solution

have a desirable implicit bias, producing state of the art results on common conditional

generation tasks. Consequently, an interesting future direction is to utilize the implicit

bias but with potentially cheaper computational overhead, and draw connections to other

biases used in other controlled generation paradigms.
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[Chá22] José A. Chávez. “Generative Flows as a General Purpose Solution for Inverse

Problems”. In: CVPR. 2022 (cit. on p. 68).

[Che+18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duve-

naud. “Neural ordinary differential equations”. In: Advances in neural infor-

mation processing systems 31 (2018) (cit. on pp. 12, 13, 19, 26, 39, 45, 62,

64).

[Che18] Ricky T. Q. Chen. torchdiffeq. 2018. url: https://github.com/rtqichen/

torchdiffeq (cit. on pp. 65, 128, 137).

[Cho+21] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sun-

groh Yoon. “ILVR: Conditioning Method for Denoising Diffusion Probabilis-

tic Models”. In: ICCV (2021) (cit. on p. 68).

[Chu+22] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. “Improv-

ing Diffusion Models for Inverse Problems using Manifold Constraints”. In:

Advances in Neural Information Processing Systems. 2022 (cit. on pp. 60,

68, 70).

[Chu+23] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis

Klasky, and Jong Chul Ye. “Diffusion Posterior Sampling for General Noisy

Inverse Problems”. In: The Eleventh International Conference on Learning

Representations. 2023 (cit. on p. 68).

[CL23] Ricky T. Q. Chen and Yaron Lipman. “Riemannian flow matching on general

geometries”. In: International Conference on Machine Learning (2023) (cit.

on p. 49).

[CLH17] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. “A downsampled

variant of imagenet as an alternative to the cifar datasets”. In: arXiv preprint

arXiv:1707.08819 (2017) (cit. on pp. 40, 55, 126).

[CMT97] J.A. Cuesta-Albertos, C. Matrán, and A. Tuero-Diaz. “Optimal Transporta-

tion Plans and Convergence in Distribution”. In: Journal of Multivariate

Analysis 60.1 (1997), pp. 72–83 (cit. on p. 113).

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq


BIBLIOGRAPHY 80

[Cop+23] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Syn-
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Appendix A

Proofs

A.1 Proofs of Chapter 3

A.1.1 Proof of Theorem 1

Since v ∈ X(M), it is locally Lipschitz. Since v is bounded it satisfies in particular∫ 1

0

∫
M
|v(t, x)| pt(x) dVxdt < +∞.

Therefore, according to the Mass Conservation Formula Theorem (see e.g., [Vil08]) equa-

tion 3.3 holds iff

∂tpt + div(ptv) = 0, (A.1)

where div denotes the divergence operator over the manifoldM. We assumed pt > 0 and

therefore dividing both sides with pt leads to

∂tpt
pt

+
⟨∇xpt, v⟩+ ptdiv(v)

pt
= 0.

where we used that div(fv) = ⟨∇xf, v⟩ + fdiv(v) for f ∈ P(M) and v ∈ X(M). Finally

noting that ∂t log pt =
∂tpt
pt

, and ∇x log pt =
∇xpt
pt

we get that equation 3.4 is equivalent to

equation A.1.

A.1.2 Proof of Theorem 2

To prove Theorem 2 we use the following Lemma proved in A.1.3:

Lemma 4. Consider paths p, q ∈ P(M) where q is generated by a flow ψt : M → M,

and q0 = p0. Then the following holds:

Dℓ(p ∥ q) = Ex∼p0

∫ 1

0

pt(ψt(x))

qt(ψt(x))

∣∣∣∣∂t [log pt(ψt(x))

qt(ψt(x))

]∣∣∣∣ℓ dt
We now use Lemma 4 to prove each case of Theorem 2:

98



APPENDIX A. PROOFS 99

ℓ = 1 case. For ℓ = 1, Lemma 4 provides the following form for D1:

D1(p ∥ q) = Ex∼p0

∫ 1

0

∣∣∣∣∂t [pt(ψt(x))

qt(ψt(x))

]∣∣∣∣ dt (A.2)

which shows that for ℓ = 1 the path divergence is equivalent to the Total Variation norm

of the density ratio pt/qt along trajectories of the flow. Second, Jensen’s inequality with

the convex function |·| provides for every T ∈ [0, 1]

D1(p ∥ q) ≥ Ex∼p0

∫ T

0

∣∣∣∣∂t [pt(ψt(x))

qt(ψt(x))

]∣∣∣∣ dt
≥ Ex∼p0

∣∣∣∣pT (ψT (x))

qT (ψT (x))
− 1

∣∣∣∣ = Ex∼qT

∣∣∣∣pT (x)qT (x)
− 1

∣∣∣∣
= Df (pT , qT )

where the first inequality is due to the fact that we integrate over the smaller interval

[0, T ], in the first equality we used the fact that ψT (x) ∼ qT if x ∼ p0, and in the last

equality we took f(r) = |r − 1|.

1 < ℓ < ∞ case. Lemma 4 again with Jensen’s inequality of the convex function |·|ℓ

provides

Dℓ(p ∥ q)
1
ℓ ≥

∣∣∣∣∣Ex∼p0

∫ T

0

[
pt(ψt(x))

qt(ψt(x))

] 1
ℓ

∂t

[
log

pt(ψt(x))

qt(ψt(x))

]
dt

∣∣∣∣∣
=

∣∣∣∣∣Ex∼p0

∫ T

0
ℓ∂t

[
pt(ψt(x))

qt(ψt(x))

] 1
ℓ

dt

∣∣∣∣∣
=

∣∣∣∣∣Ex∼p0ℓ

([
pT (ψT (x))

qT (ψT (x))

] 1
ℓ

− 1

)∣∣∣∣∣
=

∣∣∣∣∣Ex∼qT ℓ

([
pT (x)

qT (x)

] 1
ℓ

− 1

)∣∣∣∣∣ (A.3)

= Df (pT ∥ qT )

with f(r) = ℓ(1− r
1
ℓ ).

ℓ = ∞ case. We need to consider equation A.3 and move to the limit ℓ → ∞. To this

end, we prove that for any r > 0, ℓ(1 − r
1
ℓ ) ↗ − log(r), that is monotonically increasing

and converging to − log(r) as ℓ→∞. Fix r > 0, and define the function

f(s) =
(1− rs)

s

where s ∈ (0, 1). Now, using L’Hôpital’s rule:

lim
s�0

f(s) = lim
s�0

− log(r)rs

1
= − log(r)
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Therefore in particular limℓ→∞ ℓ(1 − r
1
ℓ ) = − log(r). Monotonicity follows from the fact

that for all s ∈ (0, 1) and r > 0

f ′(s) =
− log(r)srs + rs − 1

s2
=
rs

s

(
1− r−s

s
− log(r)

)
≤ 0

The inequality can be justified by first noting that rs/s > 0. Second, let 0 < r = exp(w)

we get that

1− r−s

s
− log(r) ≤ 0

which is true iff

1− exp(−ws)
s

− w ≤ 0

which is true iff

1− ws ≤ exp(−ws)

which is true iff for all u ∈ R

1− u ≤ exp(−u)

which is true since 1−u is tangent to exp(−u) at u = 0, and exp(u) is convex. Since f ′(s)

is monotonically decreasing in s, ℓ(1− r
1
ℓ ) is increasing as ℓ→∞.

Let

fℓ(x) = ℓ

(
1−

[
pT (x)

qT (x)

] 1
ℓ

)

We showed that fℓ(x)↗ f(x) = − log pT (x)
qT (x) . Furthermore, fℓ are all integrable since

∫
M
ℓ

∣∣∣∣∣1−
[
pT (x)

qT (x)

] 1
ℓ

∣∣∣∣∣ qT (x)dVx
≤ ℓ

∫
M
qT (x)dVx + ℓ

∫
M
pT (x)

1
ℓ q

1− 1
ℓ

T dVx

≤ ℓ+ ℓ

[∫
M
pT (x)dVx

] 1
ℓ
[∫

M
qT (x)dVx

]1− 1
ℓ

= 2ℓ

Where in the first inequality we used the triangle inequality, and in the second inequality

we used Holder inequality with 1
ℓ +

ℓ−1
ℓ = 1.

We assume that

Df (pT ∥ qT ) =
∫
M
f(x)qT (x)dVx <∞.
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Since fℓ(x) ≤ f(x) and both fℓ, f are integrable we have that∫
M
fℓ(x)qT (x)dVx ≤

∫
M
f(x)qT (x)dVx <∞

for all ℓ. Therefore, the Monotone Convergence Theorem (see Theorem 2.8.2 in [Bog07])

implies that

lim
ℓ→∞

∫
M
fℓ(x)qT (x)dVx =

∫
M
f(x)qT (x)dVx

Namely,

lim
ℓ→∞

Ex∼qT ℓ

(
1−

[
pT (x)

qT (x)

] 1
ℓ

)
= −Ex∼qT log

pT (x)

qT (x)

We are now ready to move to the limit ℓ→∞ in equation A.3:

lim inf
ℓ→∞

Dℓ(p ∥ q)
1
ℓ ≥ lim

ℓ→∞

∣∣∣∣∣Ex∼qT ℓ

(
1−

[
pT (x)

qT (x)

] 1
ℓ

)∣∣∣∣∣
= −Ex∼qT log

pT (x)

qT (x)
(A.4)

= Df (pT ∥ qT )

with f(r) = − log(r).

A.1.3 Proof of Lemma 4

Given a time dependent velocity field v ∈ X(M), a diffeomorphism two parameter family

Ψt,t0 :M→M can be defined via the following Ordinary Differential Equation (ODE): d
dtΨt,t0(x) = v(t,Ψt,t0(x))

Ψt0,t0(x) = x
(A.5)

The CNF diffeomorphism is defined by ψt = Ψt,0. Now, consider a smooth function u(t, x),

u : [0, 1]×M→ R, then

∂t|t=t0 [u(t,Ψt,t0(x))] = ∂tu(t0, x) + ⟨∇xu(t0, x), v(t0, x)⟩ . (A.6)

From Theorem 1 we have that

∂t log qt + ⟨∇x log qt, v⟩+ div(v) = 0

for all t ∈ [0, 1] and x ∈M. Subtracting that in our loss, we get

Dℓ(p ∥ q) = Et,x∼pt

∣∣∣∣∂t log ptqt +
〈
∇x log

pt
qt
, v

〉∣∣∣∣ℓ (A.7)
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Now using equation A.6 with u(t, x) = log pt(x)
qt(x)

, we get

∂t|t=t0 log
pt(Ψt,t0(x))

qt(Ψt,t0(x))
=

∂t log
pt0(x)

qt0(x)
+

〈
∇x log

pt0(x)

qt0(x)
, v(t0, x)

〉
Plugging this in equation A.7 with t = s and t0 = t we get:

Dℓ(p ∥ q) = Et,x∼pt

∣∣∣∣∂s|s=t log
ps(Ψs,t(x))

qs(Ψs,t(x))

∣∣∣∣ℓ
= Et,x∼qt

pt(x)

qt(x)

∣∣∣∣∂s|s=t log
ps(Ψs,t(x))

qs(Ψs,t(x))

∣∣∣∣ℓ
= Et,x∼p0

pt(ψt(x))

qt(ψt(x))

∣∣∣∣∂s|s=t log
ps(Ψs,t(ψt(x)))

qs(Ψs,t(ψt(x)))

∣∣∣∣ℓ
= Et,x∼p0

pt(ψt(x))

qt(ψt(x))

∣∣∣∣∂s|s=t log
ps(ψs(x))

qs(ψs(x))

∣∣∣∣ℓ
= Ex∼p0

∫ 1

0

pt(ψt(x))

qt(ψt(x))

∣∣∣∣∂t log pt(ψt(x))

qt(ψt(x))

∣∣∣∣ℓ dt
where in the third equality we used the fact that ψt(x) ∼ qt if x ∼ p0; in the fourth

equality we used the fact that Ψs,t(ψt(x)) = Ψs,t(Ψt,0(x)) = Ψs,0(x) = ψs(x).
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A.2 Proofs of Chapter 4

A.2.1 Proof of Theorem 3

To verify this, we check that pt and ut satisfy the continuity equation (equation 2.28):

d

dt
pt(x) =

∫ ( d
dt
pt(x|x1)

)
q(x1)dx1 = −

∫
div
(
ut(x|x1)pt(x|x1)

)
q(x1)dx1

= −div
(∫

ut(x|x1)pt(x|x1)q(x1)dx1
)
= −div

(
ut(x)pt(x)

)
,

where in the second equality we used the fact that ut(·|x1) generates pt(·|x1), in the last

equality we used equation 4.4. Furthermore, the first and third equalities are justified by

assuming the integrands satisfy the regularity conditions of the Leibniz Rule (for exchang-

ing integration and differentiation). Theorem 3 can also be derived from the Diffusion

Mixture Representation Theorem in [Pel21] that provides a formula for the marginal drift

and diffusion coefficients in diffusion SDEs.

A.2.2 Proof of Theorem 4

To ensure existence of all integrals and to allow the changing of integration order (by

Fubini’s Theorem) in the following we assume that q(x) and pt(x|x1) are decreasing to

zero at a sufficient speed as ∥x∥ → ∞, and that ut, vt,∇θvt are bounded.

First, using the standard bilinearity of the 2-norm we have that

∥vt(x)− ut(x)∥2 = ∥vt(x)∥2 − 2 ⟨vt(x), ut(x)⟩+ ∥ut(x)∥2

∥vt(x)− ut(x|x1)∥2 = ∥vt(x)∥2 − 2 ⟨vt(x), ut(x|x1)⟩+ ∥ut(x|x1)∥2

Next, remember that ut is independent of θ and note that

Ept(x)∥vt(x)∥
2 =

∫
∥vt(x)∥2pt(x)dx =

∫
∥vt(x)∥2pt(x|x1)q(x1)dx1dx

= Eq(x1),pt(x|x1)∥vt(x)∥
2,

where in the second equality we use equation 4.2, and in the third equality we change the

order of integration. Next,

Ept(x) ⟨vt(x), ut(x)⟩ =
∫ 〈

vt(x),

∫
ut(x|x1)pt(x|x1)q(x1)dx1

pt(x)

〉
pt(x)dx

=

∫ 〈
vt(x),

∫
ut(x|x1)pt(x|x1)q(x1)dx1

〉
dx

=

∫
⟨vt(x), ut(x|x1)⟩ pt(x|x1)q(x1)dx1dx

= Eq(x1),pt(x|x1) ⟨vt(x), ut(x|x1)⟩ ,

where in the last equality we change again the order of integration.
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A.2.3 Proof of Theorem 5

For notational simplicity let wt(x) = ut(x|x1). Now consider equation 2.24:

d

dt
ψt(x) = wt(ψt(x)).

Since ψt is invertible (as σt(x1) > 0) we let x = ψ−1(y) and get

ψ′
t(ψ

−1(y)) = wt(y), (A.8)

where we used the apostrophe notation for the derivative to emphasize that ψ′
t is evaluated

at ψ−1(y). Now, inverting ψt(x) provides

ψ−1
t (y) =

y − µt(x1)
σt(x1)

.

Differentiating ψt with respect to t gives

ψ′
t(x) = σ′t(x1)x+ µ′t(x1).

Plugging these last two equations in equation A.8 we get

wt(y) =
σ′t(x1)

σt(x1)
(y − µt(x1)) + µ′t(x1)

as required.
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A.3 Proofs of Chapter 5

A.3.1 Proof of Lemma 1

We need only prove that the marginal probability path interpolates between q0 and q1.

p0(x) =

∫
p0(x|x1)q1(x1)dx1 =

∫
q(x|x1)q1(x1)dx1 = q0(x). (A.9)

Then since ut(x|x1) transports all points x ∈ RD to x1 at time t = 1, we satisfy

pt=1(x|x1) = δ(x− x1).

p1(x) =

∫
p1(x|x1)q1(x1)dx =

∫
δ(x− x1)q1(x1)dx1 = q1(x). (A.10)

Theorems 3 and 4 can then be used to prove that (i) the marginal velocity field ut(x)

transports between p0 = q0 and p1 = q1, and (ii) the Joint CFM objective has the same

gradient in expectation as the Flow Matching objective and is uniquely minimized by

vt(x; θ) = ut(x).

A.3.2 Proof of Lemma 2

Note that

Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

)
= Covpt(x1|x)

(
∇θ ∥vt(x; θ)∥2 − (∇θvt(x; θ))

T ut(x|x1)
)

= (∇θvt(x; θ))
TCovpt(x1|x) (ut(x|x1)) (∇θvt(x; θ)) ,

(A.11)

and that

Covpt(x1|x) (ut(x|x1)) = Ept(x1|x) (ut(x|x1)− ut(x)) (ut(x|x1)− ut(x))
⊤ . (A.12)

Here, we used that ut(x) = Ept(x1|x) [ut(x|x1)] by equation 4.4. If we take the trace on

both sides of equation A.11, we get

Tr
[
Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

) ]
= Tr

[
(∇θvt(x; θ))

TCovpt(x1|x) (ut(x|x1)) (∇θvt(x; θ))
]

= Tr
[
Covpt(x1|x) (ut(x|x1)) (∇θvt(x; θ)) (∇θvt(x; θ))

T ]
= ⟨Covpt(x1|x) (ut(x|x1)) , (∇θvt(x; θ)) (∇θvt(x; θ))

T⟩F
≤ ∥Covpt(x1|x) (ut(x|x1)) ∥F ∥ (∇θvt(x; θ)) (∇θvt(x; θ))

T ∥F
≤ Ept(x1|x)∥ (ut(x|x1)− ut(x)) (ut(x|x1)− ut(x))

⊤ ∥F ∥ (∇θvt(x; θ)) (∇θvt(x; θ))
⊤ ∥F

= ∥∇θvt(x; θ)∥2Ept(x1|x)∥ut(x|x1)− ut(x)∥
2.

(A.13)

The second equality holds because Tr(AB) = Tr(BA) when both expressions are well

defined, and the third equality holds by the definition of the Frobenius inner product ⟨·, ·⟩F .
The first inequality holds by the Cauchy-Schwarz inequality. The second inequality holds
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by equation equation A.12 and by the triangle inequality. In the last equality we used

that for any vector v, ∥vv⊤∥F = (Tr(vv⊤, vv⊤))1/2 = ∥v∥2. This proves equation 5.11.

To prove equation 5.12, we write:

Et,pt(x)[σ
2
t,x]

≤ Et,pt(x)[∥∇θvt(x; θ)∥2Ept(x1|x)∥ut(x|x1)− ut(x)∥
2]

≤ max
x,t
∥∇θvt(x; θ)∥2 × Et,pt(x)[Ept(x1|x)∥ut(x|x1)− ut(x)∥

2]

= max
x,t
∥∇θvt(x; θ)∥2 × Et,q(x0,x1)[∥ut(xt|x1)− vt(xt; θ)∥

2] ≤ max
t,x
∥∇θvt(x; θ)∥2 × LJCFM

(A.14)

Here, the first inequality holds by equation 5.11, and the last inequality holds because

ut(x) is the minimizer of LJCFM.

A.3.3 Proof of Lemma 3

For an arbitrary test function f , by the construction of q we write

Eq(x0,x1)f(x0) = E{x(i)
0 }ki=1∼q0,{x(i)

1 }ki=1∼q1Eqk(x0,x1)f(x0). (A.15)

Since qk has marginal 1
k

∑k
i=1 δ(x0 − x

(i)
0 ) because π is a doubly stochastic matrix, we

obtain that Eqk(x0,x1)f(x0) =
1
k

∑k
i=1 f(x

(i)
0 ) and then the right-hand side is equal to

E{x(i)
0 }ki=1∼q0,{x(i)

1 }ki=1∼q1

1

k

k∑
i=1

f(x
(i)
0 ) = Eq0(x0)f(x0), (A.16)

which proves that the marginal of q for x0 is q0. The same argument works for the x1

marginal.

A.3.4 Proof of Theorem 6

Notation We begin by recalling and introducing some additional notation. Let X0 =

(xi0)
+∞
i=1 , X1 = (xi1)

+∞
i=1 be sequences of i.i.d. samples from the distributions q0 and q1,

and denote by Xk
0 = (xi0)

k
i=1, X

k
1 = (xi1)

k
i=1 the finite sequences containing the initial k

samples. We denote by qk0 and qk1 the empirical distributions corresponding to Xk
0 and

Xk
1 , i.e. q

k
0 = 1

k

∑k
i=1 δxi

0
, qk1 = 1

k

∑k
i=1 δxi

1
. Let qk be the distribution over Rd×Rd, which

is output by the matching algorithm; qk has marginals that are equal to qk0 and qk1 . Let q
∗

be the optimal transport plan between q0 and q1, and let q̃k be the optimal transport plan

between qk and q under the quadratic cost. Using this additional notation, we rewrite

some of the objects that were defined in the main text in a lengthier, more precise way:
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(i) The marginal vector field corresponding to sample size k:

ukt (x) = E
Xk

0
iid∼q0,Xk

1
iid∼q1,(x0,x1)∼qk

[x1 − x0|x = tx1 + (1− t)x0], ∀t ∈ [0, 1].

(A.17)

We made the dependency on k explicit, and we used that ψt(x0|x1) = tx1 + (1 −
t)x0. Note that equivalently, we can write ukt as the solution of a simple variational

problem.

ukt = argmin
ut

E
Xk

0
iid∼q0,Xk

1
iid∼q1,(x0,x1)∼qk

∥x1 − x0 − ut(tx1 + (1− t)x0)∥2, ∀t ∈ [0, 1].

(A.18)

(ii) The flow ψk
t (x0) corresponding to ukt , i.e. the solution of dxt

dt = ukt (xt) with initial

condition x0. We made the dependency on k explicit.

(iii) The straightness of the flow ψk
t :

Sk = Et∼U(0,1),x0∼q0

[
∥ukt (ψk

t (x0))∥2 − ∥ψk
1 (x0)− x0∥2

]
. (A.19)

Assumptions We will use the following three assumptions, which allow us to potentially

extend our result beyond BatchOT:

(A1) The distributions q0 and q1 over Rd have bounded supports, i.e. there exists C > 0

such that for any x ∈ supp(q0) ∪ supp(q1), ∥x∥ ≤ C.
(A2) q0 admits a density and the optimal transport map T between q0 and q1 under the

quadratic cost is continuous.

(A3) We assume that almost surely w.r.t. the draw of X0 and X1, q
k converges weakly

to q as k →∞.

Some comments are in order as to when assumptions (A2), (A3) hold, since they are not

directly verifiable. By the Caffarelli regularity theorem (see [Vil08], Ch. 12, originally in

[Caf92]), a sufficient condition for (A2) to hold is the following:

(A2’) q0 and q1 have a common support Ω which is compact and convex, have α-Hölder

densities, and they satisfy the lower bound q0, q1 > γ for some γ > 0.

Assumption (A3) holds when the matching algorithm is BatchOT, that is, when qk

is the optimal transport plan between qk0 and qk1 , as shown by the following proposition,

which is proven in App. A.3.4.

Proposition 2. Let qk be the optimal transport plan between qk0 and qk1 under the quadratic

cost (i.e. the result of Steps [1-3] under BatchOT). We have that almost surely w.r.t. the

draws of X0 and X1, the sequence (qk)k≥0 converges weakly to q∗, i.e. assumption (A3)

holds.

Proof structure We split the proof of Theorem 6 into two parts: in Subsubsec. A.3.4

we prove that the optimal value of the Joint CFM objective equation 5.10 converges to
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zero as k →∞. In Subsubsec. A.3.4, we prove that the straightness converges to zero and

the transport cost converges to the optimal transport cost as k →∞.

Convergence of the optimal value of the CFM objective

Theorem 8. Suppose that assumptions (A1), (A2) and (A3) hold. We have that

lim
k→∞

E
t∼U(0,1),Xk

0
iid∼q0,Xk

1
iid∼q1,(x0,x1)∼qk

∥x1 − x0 − ukt (tx1 + (1− t)x0)∥2 = 0, (A.20)

where ukt is the marginal vector field as defined in equation A.17.

Proof. The transport plan q∗ satisfies the non-crossing paths property, that is, for each

x ∈ Rd and t ∈ [0, 1], there exists at most one pair (x0, x1) such that x = tx1 + (1− t)x0
[NIO20; Vil03]. Consequently, when such a pair (x′0, x

′
1) exists, we have that the analogue

of the vector field in equation A.17 admits a simple expression:

u∗t (x) := E(x0,x1)∼q∗ [x1 − x0|x = tx1 + (1− t)x0] = x′1 − x′0 (A.21)

This directly implies that

E(x0,x1)∼q∗∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 = 0. (A.22)

Applying this, we can write

Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2

= |E(x0,x1)∼qk [Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2]

− E(x0,x1)∼q∗ [Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2]|.

(A.23)

Now, define the function f : supp(q0)× supp(q1)→ R as

f(x0, x1) = Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2. (A.24)

By Lemma 5, which holds under (A1) and (A2), we have that f is bounded and con-

tinuous. Assumption (A3) states that almost surely w.r.t. the draws of X0 and X1,

the measure qk converges weakly to q∗. We apply the definition of weak convergence of

measures, which implies that almost surely,

lim
k→∞

E(x0,x1)∼qk [f(x0, x1)] = E(x0,x1)∼q[f(x0, x1)]. (A.25)

Equivalently, the right-hand side of equation A.23 converges to zero as k tends to infinity.

Hence, Et∼U(0,1),(x0,x1)∼qk∥x1− x0− u∗t (tx1 + (1− t)x0)∥2 → 0 almost surely. Almost sure

convergence implies convergence in probability, which means that

Pr(Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 > ϵ)
k→∞−−−→ 0, ∀ϵ > 0. (A.26)

Here, the randomness comes only from drawing the random variables Xk
0 ,X

k
1 . Also, using
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again that f is bounded, say by the constant C > 0, we can write Et∼U(0,1),(x0,x1)∼qk∥x1−
x0 − u∗t (tx1 + (1− t)x0)∥2 ≤ C, for all k ≥ 0. A crude bound yields

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u

∗
t (tx1 + (1− t)x0)∥2 (A.27)

≤ ϵ+ CPr(Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 > ϵ). (A.28)

In this equation and from now, we write Xk
0 ,X

k
1 instead of Xk

0
iid∼ q0,X

k
1

iid∼ q1 for

shortness. We can take ϵ arbitrarily small, and for a given ϵ we can make the second term

in the right-hand side arbitrarily small by taking k large enough. Hence, we obtain that

lim
k→∞

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u

∗
t (tx1 + (1− t)x0)∥2 = 0. (A.29)

To conclude the proof, we use the variational characterization of ukt given in equation A.18,

which implies that

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u

k
t (tx1 + (1− t)x0)∥2

≤ Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u

∗
t (tx1 + (1− t)x0)∥2 → 0.

(A.30)

Definition 2 (Weak convergence of probability measures, convergence of random variables

in distribution). A sequence of probability measures (pk)
+∞
k=0 on a common metric space and

Borel σ-algebra converges weakly to the probability measure p if for any bounded continuous

function f , limk→∞ Epk [f ] = Ep[f ]. A sequence of random variables (Xk)
+∞
k=0 converges

in distribution to the random variable X if the sequence of their laws (pk)
+∞
k=0 converges

weakly to the law p of X.

Lemma 5. Let f be the function defined in equation equation A.24. Suppose that assump-

tions (A1) and (A2) hold. Then, f is bounded and continuous.

Proof. First, we show that the function u∗t defined in equation equation A.21 is bounded

and continuous wherever it is defined. It is bounded because u∗t (x) = x′1 − x′0 for some x′0
in supp(q0) and x

′
1 in supp(q1), which are both bounded by assumption.

To show that u∗t is continuous, we use that q0 is absolutely continuous and that con-

sequently a transport map T exists. Moreover, we have that x′1 = T (x′0). Consider the

transport map Tt at time t, defined as Tt(x) = tT (x) + (1− t)x. Thus, we can write that

u∗t (Tt(x0)) = T (x0) − x0. The non-crossing paths property implies that Tt is invertible,

which means that an inverse T−1
t exists. We can write

u∗t (x) = T (T−1
t (x))− T−1

t (x). (A.31)

By assumption (A2), the transport map T is continuous, and so is Tt. It is a well-known

fact that if E,E′ are metric spaces, E is compact, and f : E → E′ a continuous bijective

function, then f−1 : E′ → E is continuous. Thus, T−1
t is also continuous. From equation

equation A.31, we conclude that u∗t is continuous.
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The rest of the proof is straightforward: (x1, x0) 7→ ∥x1− x0− u∗t (tx1 + (1− t)x0)∥2 is

bounded and continuous on the bounded supports of q0 and q1 for all t ∈ [0, 1], and then

f is also continuous and bounded since it is an average of continuous bounded functions,

applying the dominated convergence theorem.

Convergence of the straightness and the transport cost

Theorem 9. Suppose that assumptions (A1) and (A3) hold. Then,

(i) We have that limk→∞ Sk = 0, where Sk is the straightness defined in equation A.19.

(ii) We also have that

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 ≥ Ex0∼q0∥ψk

1 (x0)− x0∥2 ≥W 2
2 (q0, q1), (A.32)

lim
k→∞

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 = lim

k→∞
Ex0∼q0∥ψk

1 (x0)− x0∥2 =W 2
2 (q0, q1).

(A.33)

Proof. We begin with the proof of (i). We introduce some additional notation. We define

the quantity S∗ in analogy with Sk:

S∗ = Et∼U(0,1),x0∼q0

[
∥u∗t (ψ∗

t (x0))∥2 − ∥ψ∗
1(x0)− x0∥2

]
, (A.34)

and ψ∗
t (x0) as the solution of the ODE dxt

dt = u∗t (xt). Since the trajectories for the

optimal transport vector field are straight lines, we deduce from the alternative expression

of the straightness (equation equation 5.14) that S∗ = 0. An alternative way to see

this is by the Benamou-Brenier theorem [BB00], which states that the dynamic optimal

transport cost Et∼U(0,1),x0∼q0∥u∗t (ψ∗
t (x0))∥2 is equal to the static optimal transport cost

Et∼U(0,1),x0∼q0∥ψ∗
1(x0)− x0∥2.

We will first prove that Et∼U(0,1),x0∼q0∥ukt (ψk
t (x0))∥2 converges to Et∼U(0,1),x0∼q0∥u∗t (ψ∗

t (x0))∥2

and then that Et∼U(0,1),x0∼q0∥ψk
1 (x0)− x0∥2 converges to Et∼U(0,1),x0∼q0∥ψ∗

1(x0)− x0∥2.

For given instances of Xk
0 and Xk

1 , let q̃k be the optimal transport plan between

the optimal transport plans q and qk. In other words, q̃k is a measure over the variables

x0, x1, x
′
0, x

′
1, and is such that its marginal w.r.t. x0, x1 is q, while its marginal w.r.t. x′0, x

′
1

is qk. That is, we will use that for all t ∈ [0, 1], the random variable tx1 + (1− t)x0, with
(x0, x1) ∼ qk, and qk built randomly from Xk

0
iid∼ q0,X

k
1

iid∼ q1, has the same distribution

as the random variable ψk
t (x0), with x0 ∼ q0. This is a direct consequence of Lemma 1,

i.e. the marginal vector field ut generates the marginal probability path pt. An analogous

statement holds for q, i.e. the random variable tx1 + (1− t)x0, with (x0, x1) ∼ q, has the
same distribution as the random variable ψ∗

t (x0), with x0 ∼ q0. However, in this case it

can be obtained immediately by the non-crossing paths property of the optimal transport

plan. Hence,

Et∼U(0,1),x0∼q0∥u
∗
t (ψ

∗
t (x0))∥2 = Et∼U(0,1),(x0,x1)∼q∥u∗t (tx1 + (1− t)x0)∥2,

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 = Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1)∼qk∥u

k
t (tx1 + (1− t)x0)∥2.

(A.35)
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Using this and the definition of q̃k, and applying Jensen’s inequality, the Cauchy-Schwarz

inequality and the triangle inequality, we can write∣∣Et∼U(0,1),x0∼q0∥u
∗
t (ψ

∗
t (x0))∥2 − Et∼U(0,1),x0∼q0∥u

k
t (ψ

k
t (x0))∥2

∣∣
= |Et∼U(0,1),(x0,x1)∼q∥u∗t (tx1 + (1− t)x0)∥2 − Et∼U(0,1),Xk

0 ,X
k
1 ,(x

′
0,x

′
1)∼qk∥u

k
t (tx

′
1 + (1− t)x′0)∥2|

=
∣∣Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)∥2 − ∥ukt (tx′1 + (1− t)x′0)∥2

]∣∣
=
∣∣Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥ − ∥ukt (tx′1 + (1− t)x′0)∥)

× (∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)
]∣∣

≤
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥ − ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
×
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
≤
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k∥u

∗
t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

)1/2
×
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
.

(A.36)

Remark that the second factor in the right-hand side is bounded because u∗t and ukt are

bounded. Using Lemma 6, we obtain that the first factor in the right-hand side tends to

zero as k grows. Thus,∣∣Et∼U(0,1),x0∼q0∥u
∗
t (ψ

∗
t (x0))∥2 − Et∼U(0,1),x0∼qk0

∥ukt (ψk
t (x0))∥2

∣∣ k→∞−−−→ 0. (A.37)

Now, since Ex0∼q0∥ψ∗
1(x0)− x0∥2 is the optimal cost and S∗ = 0, we write∣∣Ex0∼q0∥ψ∗

1(x0)− x0∥2 − Ex0∼q0∥ψk
1 (x0)− x0∥2

∣∣ = Ex0∼q0∥ψk
1 (x0)− x0∥2 − Ex0∼q0∥ψ∗

1(x0)− x0∥2

(A.38)

= Ex0∼q0∥ψk
1 (x0)− x0∥2 − Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2.

(A.39)

Since ψk
t is the flow of ukt and by Jensen’s inequality, we have that

Ex0∼q0∥ψk
1 (x0)− x0∥2 = Ex0∼q0

∥∥∥∥∫ 1

0
uks(ψ

k
s (x

′
0)) ds

∥∥∥∥2
≤ Ex0∼q0

∫ 1

0
∥uks(ψk

s (x0))∥2 ds = Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2.

Plugging this into equation A.38, we get that∣∣Ex0∼q0∥ψ∗
1(x0)− x0∥2 − Ex0∼q0∥ψk

1 (x0)− x0∥2
∣∣ (A.40)

≤ Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 − Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2

k→∞−−−→ 0, (A.41)

where the limit holds by equation A.40. Putting together equation A.37 and equation A.40,

we end up with Sk = |S∗ − Sk| k→∞−−−→ 0, which proves (i).

We prove (ii). The first inequality in equation A.32 holds because Sk ≥ 0 since it can
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be written in a form analogous to equation 5.14. The second inequality in equation A.32

holds because Ex0∼q0∥ψk
1 (x0)−x0∥2 is the squared transport cost for the map x 7→ ψk

1 (x),

which must be at least as large as the optimal cost. The first equality in equation A.32

is a direct consequence of (i). To prove the second equality in equation A.32, we remark

that W 2
2 (q0, q1) = Ex0∼q0∥ψ∗

1(x0) − x0∥2. Then, equation equation A.40 readily implies

that |Ex0∼qk0
∥ψk

1 (x0)− x0∥2 −W 2
2 (q0, q1)|

k→∞−−−→ 0.

Lemma 6. Suppose that assumptions (A1) and (A3) hold. Let q̃k be the optimal trans-

port plan between the optimal transport plans q and qk. We have that

lim
k→∞

E
t∼U(0,1),Xk

0
iid∼q0,Xk

1
iid∼q1,(x0,x1,x′

0,x
′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
= 0

(A.42)

Proof. For given instances of Xk
0 and Xk

1 , we can write

Et∼U(0,1),(x0,x1,x′
0,x

′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
= Et∼U(0,1),(x0,x1,x′

0,x
′
1)∼q̃k

[
∥Ex̃0,x̃1∼q[x̃1 − x̃0|tx1 + (1− t)x0 = tx̃1 + (1− t)x̃0]

− Ex̃′
0,x̃

′
1∼qk [x̃

′
1 − x̃′0|tx′1 + (1− t)x′0 = tx̃′1 + (1− t)x̃′0]∥2

]
≤ E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥x1 − x0 − (x′1 − x′0)
∥∥2] ≤ 2E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥x1 − x′1∥∥2 + ∥∥x0 − x′0∥∥2]
= 2E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥(x0, x1)− (x′0, x
′
1)
∥∥2] = 2W 2

2 (q, q
k)

(A.43)

Assumption (A3) implies that almost surely, qk converges to q weakly. For distributions

on a bounded domain, weak convergence is equivalent to convergence in the Wasserstein

distance [Vil08, Thm. 6.8], and this means that W 2
2 (q, q

k)
k→∞−−−→ 0 almost surely. Almost

sure convergence implies convergence in probability, which means that

Pr(W 2
2 (q, q

k) > ϵ)
k→∞−−−→ 0, ∀ϵ > 0. (A.44)

Note thatW 2
2 (q, q

k) is a bounded random variable because q and qk have bounded support

as q0, q1, q
k
0 and qk1 have bounded support. Suppose that W 2

2 (q, q
k) is bounded by the

constant C. Hence, we can write

EXk
0 ,X

k
1
Et∼U(0,1),(x0,x1,x′

0,x
′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
(A.45)

≤ 2EXk
0 ,X

k
1
W 2

2 (q, q
k) ≤ 2

(
ϵ+ CPr(W 2

2 (q, q
k) > ϵ)

)
. (A.46)

We can take ϵ arbitrarily small, and for a given ϵ we can make the second term in the

right-hand side arbitrarily small by taking k large enough. The final result follows.

Proof of Proposition 2

We have that almost surely, the empirical distributions qk0 , resp. q
k
1 , converge weakly to q0,

resp. q1 [Var58]. Hence, we can apply Theorem 10. Since convergence in distribution of

random variables is equivalent to weak convergence of their laws, and the law of an optimal
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coupling is the optimal transport plan, we conclude that (qk)k≥0 converges weakly to q∗.

Theorem 10 ([CMT97], Theorem 3.2). Let (Pn)n, (Qn)n, P , Q be probability measures in

P2 (the space of Borel probability measures with bounded second order moment) such that

P ≪ λp (P is absolutely continuous with respect to the Lebesgue measure) and Pn
w−→ P ,

Qn
w−→ Q, where

w−→ denotes weak convergence of probability measures. Let (Xn, Yn) be an

optimal coupling between Pn and Qn, n ∈ N, and (X,Y ) an optimal coupling between P

and Q. Then, (Xn, Yn)
L−→ (X,Y ), where

L−→ denotes convergence of random variables in

distribution.

A.3.5 Bounds on the transport cost and monotone convergence results

The following result shows that for an arbitrary joint distribution q(x0, x1), we can upper-

bound the transport cost associated to the marginal vector field ut to a quantity that

depends only q(x0, x1).

Proposition 3. For an arbitrary joint distribution q(x0, x1) with marginals q0(x0) and

q1(x1), let ψt be the flow corresponding to the marginal vector field ut. We have that

Eq0(x0)∥ψ1(x0)− x0∥2 ≤ Eq(x0,x1)∥x1 − x0∥
2, (A.47)

Proof. We make use of the notation introduced in App. A.3.4. We will rely on the fact

that for all t ∈ [0, 1], the random variable tx1 + (1− t)x0, with (x0, x1) ∼ q has the same

distribution as the random variable ψt(x0), with x0 ∼ q0. This is a direct consequence of

Lemma 1. Using that ψt is the flow for ut and Jensen’s inequality twice, we have that

Ex0∼q0∥ψ1(x0)− x0∥2

= Ex0∼q0

∥∥∥∥∫ 1

0
us(ψs(x0)) ds

∥∥∥∥2 ≤ Et∼U(0,1),x0∼q0∥ut(ψt(x0))∥2

= Et∼U(0,1),(x0,x1)∼q∥ut(tx1 + (1− t)x0)∥2

= Et∼U(0,1),(x0,x1)∼q∥E(x′
0,x

′
1)∼q

[
ut(tx1 + (1− t)x0|x′0, x′1)|tx1 + (1− t)x0 = tx′1 + (1− t)x′0

]
∥2

≤ Et∼U(0,1),(x0,x1)∼qE(x′
0,x

′
1)∼q

[
∥ut(tx1 + (1− t)x0|x′0, x′1)∥2|tx1 + (1− t)x0 = tx′1 + (1− t)x′0

]
= Et∼U(0,1),(x0,x1)∼qE(x′

0,x
′
1)∼q

[
∥x′1 − x′0∥2|tx1 + (1− t)x0 = tx′1 + (1− t)x′0

]
= Et∼U(0,1),(x0,x1)∼q∥x1 − x0∥2

(A.48)

as needed.

Note that that the statement and proof of this proposition is equivalent to Theorem 3.5

of [LGL23], although the language and notation that we use is different, which is why we

though convenient to include it.

For the case of BatchOT, the following theorem shows that the quantity in the upper

bound of equation A.47 is monotonically decreasing in k. The combination of Proposition

3 and Theorem 11 provides a weak guarantee that for BatchOT, the transport cost should

not get much higher when k increases.
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Theorem 11. Suppose that Multisample Flow Matching is run with BatchOT. For clarity,

we make the dependency on the sample size k explicit and let1 q(k)(x0, x1) := q(x0, x1),

and ψk
t (x0) := ψt(x0). Then, for any k ≥ 1, we have that

Eq0(x0)∥ψ
k
1 (x0)− x0∥2 ≤ Eq(k)(x0,x1)

∥x1 − x0∥2,

Eq(k+1)(x0,x1)
∥x1 − x0∥2 ≤ Eq(k)(x0,x1)

∥x1 − x0∥2.
(A.49)

Proof. We write

Et∼U(0,1),Xk+1
0 ,Xk+1

1
E(x0,x1)∼qk+1∥x1 − x0∥2 =

1

k
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k∑
i=1

∥x(i)1 − x
(σk+1(i))
0 ∥2

]

=
1

k

1

k + 1
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σk+1(i))
0 ∥2

]

≤ 1

k

1

k + 1
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2

]

= Et∼U(0,1),Xk
0 ,X

k
1

[
1

k

k∑
j=1

∥x(i)1 − x
(σk(i))
0 ∥2

]
= Et∼U(0,1),Xk

0 ,X
k
1
E(x0,x1)∼qk∥x1 − x0∥2.

(A.50)

In the first equality, we used that the optimal transport map between the empirical dis-

tributions qk0 and qk1 can be encoded as a permutation, which we denote by σk+1. In

the inequality, we introduced the notation σ−j
k to denote the optimal permutation within

{x(i)0 }i∈[k+1]\{j}. The inequality holds because using the optimality of σk+1:

k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σk+1(i))
0 ∥2 ≤

k+1∑
j=1

∑
i∈[k+1]

∥x(i)1 − x
(σk+1(i))
0 ∥2

≤
k+1∑
j=1

( ∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2 + ∥x(j)1 − x

(j)
0 ∥

2

)
≤

k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2.

(A.51)

1Note that here q(k) := q is a marginalized distribution and is different from qk defined in Step 3.
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A.4 Proofs of Chapter 6

A.4.1 Proof of Proposition 1

We recall a general affine Gaussian path is defined by

pt(x|x1) = N (x|αtx1, σ
2
t I), conditional probability path (A.52)

pt(x) =

∫
pt(x|x1)q(x1)dx1, marginal probability path (A.53)

where (αt, σt) define the scheduler and q is the dataset probability density. The velocity

fields defining these paths are [Lip+23]:

ut(x|x1) = atx+ btx1, at =
σ̇t
σt
, bt = α̇t − αt

σ̇t
σt

conditional velocity field

(A.54)

ut(x) =

∫
ut(x|x1)pt(x1|x)dx1, pt(x1|x) =

pt(x|x1)q(x1)
pt(x)

marginal velocity field

(A.55)

The differential of the denoiser is then:

Dxx̂1|t(x) = Dx

∫
x1pt(x1|x)dx1 =

∫
x1∇xpt(x1|x)dx1 (A.56)

Since pt(x|x1) is a Gaussian:

∇xpt(x|x1) =
αtx1 − x

σ2t
pt(x|x1) (A.57)

and plugging into A.53, we have:

∇xpt(x) =

∫
αtx1 − x

σ2t
pt(x|x1)q(x1)dx1 (A.58)

using A.55, we get:

∇xpt(x1|x) = pt(x1|x)
αt

σ2t

(
x1 − x̂1|t(x)

)
(A.59)

therefore, A.56 takes the form:

Dxx̂1|t(x) =

∫
αt

σ2t
pt(x1|x)x1(x1 − x̂1|t(x))Tdx1 = (A.60)

=

∫
αt

σ2t
pt(x1|x)(x1 − x̂1|t(x))(x1 − x̂1|t(x))Tdx1 =

αt

σ2t
Var1|t(x)
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A.4.2 Proof of Theorem 7

To compute the differential of x(1) w.r.t the initial point x0 we utilize adjoint dynamics.

Let us define the adjoint p(t) = Dx(t)x(1). The dynamics of p(t) are defined by the

following ODE [Eva05]:

ṗ(t) = −Dxut(x(t))
T p(t) (A.61)

p(1) = Dx(1)x(1) = I. (A.62)

To compute Dx0x(1) we solve A.61 from time t = 1 back to time t = 0. Then,

p(0) = Dx0x(1). (A.63)

First, we will use the properties of AGPPs to further analyze the differential of the

velocity field, Dxut(x(t)), that defines the adjoint dynamics in equation A.61.

We write the velocity field in terms of the denoiser by plugging A.54 into A.55:

ut(x) = atx+ btx̂1|t(x) (A.64)

and using equation A.60, the differential of the velocity field is:

Dxut(x) = atI + btDxx̂1|t(x) = atI + bt
αt

σ2t
Var1|t(x) (A.65)

The adjoint dynamics are then given by:

ṗ(t) = A(t)p(t) (A.66)

p(1) = Dx(1)x(1) = I. (A.67)

where

A(t) = −
(
atI + γtVar1|t(x)

)T
. (A.68)

and we define:

γt = bt
αt

σ2t
=

(
α̇t − αt

σ̇t
σt

)
αt

σ2t
=
α̇tαtσ

2
t − α2

t σ̇tσt
σ4t

=
1

2

d

dt

(
α2
t

σ2t

)
=

1

2

d

dt
snr(t) (A.69)

The adjoint ODE A.66 is a non-autonomous linear ODE and together with the initial

condition equation A.67 its solution is given by [SN20]:

p(t) = T exp

[
−
∫ 1

t
A(s)ds

]
p(1) (A.70)
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known as the time-ordered exponential, defined as follows:

T exp

[∫ 1

t
A(s)ds

]
=

∞∑
n=1

(−1)n

n!

∫ 1

t
· · ·
∫ 1

t
T {A(s1)A(s2) . . . A(sn)}ds1ds2 . . . dsn (A.71)

where T {A(s1)A(s2) . . . A(sn)} orders the product of matrices such that the value of si

decreases from right to left. Alternative equivalent solutions to this differential equation

are the dyson series [SN20] and the Magnus expansion [Mag54].

When the matrices {A(s)}s∈[1,t] commute, i.e., [A(s), A(s′)] = A(s)A(s′)−A(s′)A(s) =
0, the time-ordered exponential A.71 reduces to the first term in the sum for n = 1 in A.71.

We can therefore separate the first term in A.68, since I commutes with every matrix, and

arrive at a simplified solution for t = 0:

Dx0x(1) = σ1T exp

[∫ 1

0
γtVar1|t(x)dt

]
, (A.72)

where exp
[∫ 1

0 atdt
]
= σ1 under the assumption that at is integrable, concluding the proof.

Next we show that the integral in equation 6.18 is defined also for σ1 = 0.

Lemma 7. For a Lipschitz function f : Rd → R we have that
∫
N (x|y, σ2I)f(x)dx =

f(y) +O(σ).

Proof. ∣∣∣∣∫ N (x|y, σ2I)f(x)dx− f(y)
∣∣∣∣ ≤ ∫ N (x|y, σ2I)) |f(x)− f(y)| dx

=

∫
N (z|0, I) |f(σz + y)− f(y)| dz

≤ Kσ
∫
N (z|0, I) |z| dz

= O(σ),

where in the first equality we performed a change of variable z = x−y
σ , and in the second

inequality we used the fact that f is Lipschitz with constant K > 0.

Using this Lemma we prove (under the assumption that p1(x) and its derivatives is

Lipschitz):

Proposition 4. The denoiser asymptotics at t→ 1 is

x̂1|t(x) =
x

αt
+O(σt) (A.73)

Proof. First we note that we assume σt → 0 and αt → 1 as t→ 1,

N (x|αtx1, σ
2
t I) = ctN

(
x1

∣∣∣∣ xαt
,

(
σt
αt

)2

I

)
, (A.74)
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where ct is some normalization constant such that c1 = 1. Now,

pt(x) =

∫
N (x|αtx1, σ

2
t I)p1(x1)dx1 (A.75)

= ct

∫
N

(
x1

∣∣∣∣ xαt
,

(
σt
αt

)2

I

)
p1(x1)dx1 (A.76)

= ctp1

(
x

αt

)
+O(σt), (A.77)

where in second equality we used equation A.74 and the last equality Lemma 7.

x̂1|t(x) =

∫
x1pt(x1|x)dx1 (A.78)

=

∫
x1
N (x|αtx1, σ

2
t I)p1(x1)

pt(x)
dx1 (A.79)

=

∫
x1

ctN
(
x1

∣∣∣ xαt
,
(

σt
αt

)2
I

)
p1(x1)

pt(x)
dx1 (A.80)

=
ct

x
αt
p1

(
x
αt

)
+O(σt)

ctp1

(
x
αt

)
+O(σt)

(A.81)

=
x

αt
+O(σt), (A.82)

where in the second equality we used the definition of pt(x1|x), in the third equality we

used equation A.74, and in the fourth equality we used Lemma 7.

Now we can show that Dxut(x(t)) is bounded as t→ 1

Dxut(x(t)) = atI + btDxx̂1|t(x) (A.83)

= atI + bt

(
1

at
I +O(σt)

)
(A.84)

=
α̇t

αt
I +O(1), (A.85)

where in the first equality we used equation A.65, in the second Proposition 4 (and the

fact that the derivatives of p1 are Lipschitz for the derivation of the asymptotic rule), and

in the last equality equation A.54. Furthermore Dxut(x(t)) is bounded as t → 0 as both

a0, b0 are well defined. This means that Dxut(x(t)) is integrable over [0, 1].

A.4.3 Discrete Time Analysis

Theorem 7 analyzes the continuous time case, providing intuition about the behavior of the

dynamics of x(1) when changing the initial condition x0. The final expression 6.18, how-

ever, involves a time-ordered exponential which may be hard to interpret. Furthermore,

our experiments show that even with a small number of discrete steps, differentiating x(1)

with respect to x0 yields meaningful gradients, performing well in practice (see B.4.1).
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Let us consider Euler solver with N uniform steps of size h = 1
N , with initial point x0.

An intermediate point at time mh, xmh is given by:

x(m+1)h = xmh + humh(xmh) (A.86)

We are interested at the derivative of xNh = x(1) w.r.t x0.

By the chain rule and equation A.65, one can write:

Dx0x1 =
N−1∏
m=0

Dxmh
x(m+1)h =

N−1∏
m=0

(
(1 + hamh)I + hγmhVar1|mh(xmh)

)
(A.87)

note that this is also a time-ordered product, with m decreasing from left to right.

For the CondOT probability path, where αt = t, σt = 1− t, A.87 takes the form:

Dx0x1 =
N−1∏
m=0

(1− (m+ 1)h

1−mh
I +

mh2

(1−mh)3
Var1|mh(xmh)

)
(A.88)

A.4.4 On Flow-Matching, Denoisers and Noise Prediction

Consider a general affine conditional probability path defined by the following transport

map:

xt = σtx0 + αtx1

where x0 ∼ p0 and x1 ∼ p1.

For different choices of σt, αt we can parametrize known diffusion and flow-matching

paths. The corresponding conditional vector field on x1 is:

ut(x|x1) =
σ̇t
σt

(x− αtx1) + α̇tx1 =
σ̇t
σt
x−

(
σ̇tαt

σt
− α̇t

)
x1

and the conditional vector field on x0 is:

ut(x|x0) = σ̇tx0 +
α̇t

αt
(x− σtx0) =

α̇t

αt
x−

(
α̇tσt
αt
− σ̇t

)
x0

where ḟ = d
dtf .

Consider the marginal velocity field:

ut(x) =

∫
ut(x|x1)pt(x1|x)dx1 =

∫
ut(x|x0)pt(x0|x)dx0

One can express it in terms of the optimal denoiser function, x̂1|t(x):
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ut(x) =
σ̇t
σt

∫
xpt(x1|x)dx1 −

(
σ̇tαt

σt
− α̇t

)∫
x1pt(x1|x)dx1 =

σ̇t
σt
x−

(
σ̇tαt

σt
− α̇t

)
x̂1|t(x)

(A.89)

For Cond-OT:

ut(x) =
x̂1|t(x)− x

1− t
(A.90)

Or, in terms of the optimal noise predictor, ϵt(x), like in DDPM:

ut(x) =
α̇t

αt

∫
xpt(x0|x)dx0 −

(
α̇tσt
αt
− σ̇t

)∫
x0pt(x0|x)dx0 =

α̇t

αt
x−

(
α̇tσt
αt
− σ̇t

)
ϵt(x)

and for Cond-OT:

ut(x) =
x− ϵt(x)

t
(A.91)
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Additional Details and Figures

B.1 Additions for Chapter 3

B.1.1 Velocity Field Representation

We describe how we represent the parametric part of our system, namely the velocity field

vθ ∈ P(M), for the different manifold types we consider: Euclidean space, spheres and

product manifolds. In the Euclidean case we use an MLP vθ : Rd+1 → Rd, where d is the

dimension of M. We use standard Euclidean inner product, gradient ∇, and divergence

div = ∇· for computing the PPD (equation 3.6), where the path p defined in equation 3.12.

In the sphere case Sd ⊂ Rd+1, similarly to [Roz+21] we define v to be constant in the

normal direction to the sphere and produce tangent vectors via the tangent projection

operator

vθ(t, x) =

(
I − xxT

∥x∥2

)
wθ

(
t,

x

∥x∥

)
, (B.1)

where wθ : Rd+2 → Rd+1 is an MLP. The inner product on the sphere is the induced

Euclidean one, i.e., for v, u ∈ TxSd we have ⟨u, v⟩ = uT v. For vθ defined in equation B.1,

the Riemannian gradient and divergence coincide with the Euclidean gradient ∇ and

divergence ∇·. p is defined as in equation 3.15. For notational simplicity we explain the

product manifold implementation for two manifoldsM = Rd1 × Sd2 , where the extension

to product of N manifolds is similar. The tangent velocity field is a function of the form

vθ : Rd1+1 × Rd2+2 → Rd1 × Rd2+1. For (t1, x1, t2, x2) ∈ Rd1+1 × Rd2+2 we let

vθ(t1, x1, t2, x2) =

 v1

(
t1, x1, t2,

x2
∥x2∥

)
(
I − x2xT

2

∥x2∥2

)
v2

(
t1, x1, t2,

x2
∥x2∥

)


where v1, v2 are MLPs. The inner product (v1, v2), (u1, u2) ∈ TxM is defined by ⟨v1, u1⟩+
⟨v2, u2⟩; the gradient as ∇ = (∇1,∇2)

T , where ∇1 is the Euclidean gradient w.r.t. x1, and

∇2 is the Euclidean gradient w.r.t. x2; the divergence div(v) = ∇1 · v1 +∇2 · v2. Lastly, p
is defined as in equation 3.10 with kernel equation 3.16.

121
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B.1.2 Numerically Stable Derivative of the Normalizing Constant of

vMF

The log of the normalizing constant of the vMF has the form

logCp(κ) =
(p
2
− 1
)
log κ− p

2
log(2π)−

[
κ+ log ive(

p

2
− 1, κ)

]
where ive(ν, κ) = iv(ν, κ) exp(−κ). Now, the log ive(p2 − 1, κ) is stable but its derivative

is not. Therefore we will define a new function and its derivative: logive(ν, κ). Its forward

will be defined by;

logive(ν, κ) = log (ive(ν, κ)) ,

and for its derivative we first note:

∂κ log ive(ν, κ) =
∂κive(ν, κ)

ive(ν, κ)
=

ive(ν − 1, κ)− ive(ν, κ)
[
ν+κ
κ

]
ive(ν, κ)

=
ive(ν − 1, κ)

ive(ν, κ)
−
[
ν + κ

κ

]
=

ive(ν − 1, κ)

ive(ν, κ)
− ν

κ
− 1

For high dimensions the ive ratio is numerically unstable and several approximations have

been suggested. In particular [RS16] suggest the following lower and upper bounds:

ν − 1
2 +

√
(ν + 1

2)
2 + κ2

κ
>

ive(ν − 1, κ)

ive(ν, κ)
>
ν − 1 +

√
(ν + 1)2 + κ2

κ

Similar to [OAP19] we take the average of the higher and lower bound (see [OAP19] for

empirically demonstrating the quality of this approximation):

∂κ log ive(ν, κ) =
ive(ν − 1, κ)

ive(ν, κ)
− ν

κ
− 1 ≈

−1.5 +
√

(ν + 1)2 + κ2 +
√
(ν + 1

1)
2 + κ2

2κ
− 1

and this is defined as the derivative of logive.

B.1.3 Experimental Details

Toy densities on R2 and S2

For the R2 datasets we used a 3 layer MLP with hidden dimension 256. We trained

with Adam optimizer with learning rate 1e − 4, batch size 1000, σ1 = 0.01 and ℓ =

1. The searched parameters across learning rates are {1e − 3, 5e − 4, 1e − 4} and σ1 ∈
{0.005, 0.01, 0.05}. For the S2 datasets we used a 6 layer MLP with hidden dimension 512.

We trained with Adam optimizer with learning rate 1e− 4, batch size 1000, κ = 5000 and

ℓ = 1.

Earth and climate datasets

For the earth and climate datasets we used a 6 layer MLP with hidden dimension 512.

We trained with Adam optimizer with learning rate 1e− 4, batch size 1000, κ = 55K and
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ℓ = 2. The searched parameters across κ are {5K, 55K, 500k}.

Higher dimensional spheres

We ran experiments on S15 for different k = 2, 3, 4 values. The architecture used was a

3 layer MLP with hidden dimension 64, Adam optimizer with learning rate 1e− 3, batch

size 7000, κ = 5K and ℓ = 2. We searched over learning rates {1e− 3, 1e− 4, 1e− 5}.

The S-FFJORD baseline is as described in the paper. We used the architecture used for

the 2D toy experiments in the FFJORD paper, as published in the official FFJORD code

repository. We run both PPM and S-FFJORD with approximate divergence computation

using the Hutchinson estimator.

Product of manifolds - Robotics

For the robotics datasets we used a 6 layer MLP with hidden dimension 512. We trained

with Adam optimizer with learning rate 1e− 4, batch size 1000, κ = 55K and ℓ = 1. The

searched parameters across κ are {5K, 55K}.
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B.2 Additions for Chapter 4

B.2.1 Diffusion Conditional Velocity Fields

We derive the velocity field governing the Probability Flow ODE (equation 13 in [Son+21b])

for the VE and VP diffusion paths (equation 4.14) and note that it coincides with the con-

ditional velocity fields we derive using Theorem 5, namely the velocity fields defined in

equations 4.12 and 4.15.

We start with a short primer on how to find a conditional velocity field for the prob-

ability path described by the Fokker-Planck equation, then instantiate it for the VE and

VP probability paths.

Since in the diffusion literature the diffusion process runs from data at time t = 0 to

noise at time t = 1, we will need the following lemma to translate the diffusion VFs to our

convention of t = 0 corresponds to noise and t = 1 corresponds to data:

Lemma 8. Consider a flow defined by a velocity field ut(x) generating probability density

path pt(x). Then, the velocity field ũt(x) = −u1−t(x) generates the path p̃t(x) = p1−t(x)

when initiated from p̃0(x) = p1(x).

Proof. We use the continuity equation (equation 2.28):

d

dt
p̃t(x) =

d

dt
p1−t(x) = −p′1−t(x)

= div(p1−t(x)u1−t(x))

= −div(p̃t(x)(−u1−t(x)))

and therefore ũt(x) = −u1−t(x) generates p̃t(x).

Conditional VFs for Fokker-Planck probability paths Consider a Stochastic Dif-

ferential Equation (SDE) of the standard form

dy = ftdt+ gtdw (B.2)

with time parameter t, drift ft, diffusion coefficient gt, and dw is the Wiener process. The

solution yt to the SDE is a stochastic process, i.e., a continuous time-dependent random

variable, the probability density of which, pt(yt), is characterized by the Fokker-Planck

equation:
dpt
dt

= −div(ftpt) +
g2t
2
∆pt (B.3)

where ∆ represents the Laplace operator (in y), namely div∇, where ∇ is the gradient

operator (also in y). Rewriting this equation in the form of the continuity equation can

be done as follows [MRO20b]:

dpt
dt

= −div
(
ftpt −

g2

2

∇pt
pt

pt

)
= −div

((
ft −

g2t
2
∇ log pt

)
pt

)
= −div

(
wtpt

)



APPENDIX B. ADDITIONAL DETAILS AND FIGURES 125

where the velocity field

wt = ft −
g2t
2
∇ log pt (B.4)

satisfies the continuity equation with the probability path pt, and therefore generates pt.

Variance Exploding (VE) path The SDE for the VE path is

dy =

√
d

dt
σ2t dw,

where σ0 = 0 and increasing to infinity as t → 1. The SDE is moving from data, y0, at

t = 0 to noise, y1, at t = 1 with the probability path

pt(y|y0) = N (y|y0, σ2t I).

The conditional VF according to equation B.4 is:

wt(y|y0) =
σ′t
σt

(y − y0)

Using Lemma 8 we get that the probability path

p̃t(y|y0) = N (y|y0, σ21−tI)

is generated by

w̃t(y|y0) = −
σ′1−t

σ1−t
(y − y0),

which coincides with equation 4.13.

Variance Preserving (VP) path The SDE for the VP path is

dy = −T
′(t)

2
y +

√
T ′(t)dw,

where T (t) =
∫ t
0 β(s)ds, t ∈ [0, 1]. The SDE coefficients are therefore

fs(y) = −
T ′(s)

2
y, gs =

√
T ′(s)

and

pt(y|y0) = N (y|e−
1
2
T (t)y0, (1− e−T (t))I).

Plugging these choices in equation B.4 we get the conditional VF

wt(y|y0) =
T ′(t)

2

(
y − e−

1
2
T (t)y0

1− e−T (t)
− y

)
(B.5)



APPENDIX B. ADDITIONAL DETAILS AND FIGURES 126

t = 0.0 t = 1/3 t = 2/3 t = 1.0

Diffusion path – conditional velocity field

Figure B.1: VP Diffusion path’s conditional velocity field. Compare to Figure 4.2.

ScoreFlow

DDPM

Figure B.2: Trajectories of CNFs trained with ScoreFlow [Son+21a] and DDPM [HJA20] losses
on 2D checkerboard data, using the same learning rate and other hyperparameters as Figure 4.4.

Using Lemma 8 to reverse the time we get the conditional VF for the reverse probability

path:

w̃t(y|y0) = −
T ′(1− t)

2

(
y − e−

1
2
T (1−t)y0

1− e−T (1−t)
− y

)

= −T
′(1− t)
2

[
e−T (1−t)y − e−

1
2
T (1−t)y0

1− e−T (1−t)

]
,

which coincides with equation 4.15.

B.2.2 Implementation details

For the 2D example we used an MLP with 5-layers of 512 neurons each, while for images

we used the UNet architecture from [DN21]. For images, we center crop images and resize

to the appropriate dimension, whereas for the 32×32 and 64×64 resolutions we use the

same pre-processing as [CLH17]. The three methods (FM-OT, FM-Diffusion, and SM-

Diffusion) are always trained on the same architecture, same hyper-parameters, and for

the same number of epochs.

Diffusion baselines

Losses. We consider three options as diffusion baselines that correspond to the most

popular diffusion loss parametrizations [SE19; Son+21a; HJA20; Kin+21]. We will assume

general Gaussian path form of equation 4.6, i.e.,

pt(x|x1) = N (x|µt(x1), σ2t (x1)I).
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Score Matching loss is

LSM(θ) = Et,q(x1),pt(x|x1)λ(t) ∥st(x)−∇ log pt(x|x1)∥2 (B.6)

= Et,q(x1),pt(x|x1)λ(t)

∥∥∥∥st(x)− x− µt(x1)
σ2t (x1)

∥∥∥∥2 . (B.7)

Taking λ(t) = σ2t (x1) corresponds to the original Score Matching (SM) loss from [SE19],

while considering λ(t) = β(1 − t) (β is defined below) corresponds to the Score Flow

(SF) loss motivated by an NLL upper bound [Son+21a]; st is the learnable score function.

DDPM (Noise Matching) loss from [HJA20] (equation 14) is

LNM(θ) = Et,q(x1),pt(x|x1)

∥∥∥∥ϵt(x)− x− µt(x1)
σt(x1)

∥∥∥∥2 (B.8)

= Et,q(x1),p0(x0)

∥∥∥ϵt(σt(x1)x0 + µt(x1))− x0
∥∥∥2 (B.9)

where p0(x) = N (x|0, I) is the standard Gaussian, and ϵt is the learnable noise function.

Diffusion path. For the diffusion path we use the standard VP diffusion (equation 4.15),

namely,

µt(x1) = α1−tx1, σt(x1) =
√

1− α2
1−t, where αt = e−

1
2
T (t), T (t) =

∫ t

0
β(s)ds,

with, as suggested in [Son+21b], β(s) = βmin + s(βmax − βmin) and consequently

T (s) =

∫ s

0
β(r)dr = sβmin +

1

2
s2(βmax − βmin),

where βmin = 0.1, βmax = 20 and time is sampled in [0, 1 − ϵ], ϵ = 10−5 for training and

likelihood and ϵ = 10−5 for sampling.

Sampling. Score matching samples are produced by solving the ODE (equation 2.24)

with the velocity field

ut(x) = −
T ′(1− t)

2
[st(x)− x] . (B.10)

DDPM samples are computed with equation B.10 after setting st(x) = ϵt(x)/σt, where

σt =
√

1− α2
1−t.

Training & evaluation details

We report the hyper-parameters used in Table B.1. We use full 32 bit-precision for training

CIFAR10 and ImageNet-32 and 16-bit mixed precision for training ImageNet-64/128/256.

All models are trained using the Adam optimizer with the following parameters: β1 = 0.9,

β2 = 0.999, weight decay = 0.0, and ϵ = 1e−8. All methods we trained (i.e., FM-OT,

FM-Diffusion, SM-Diffusion) using identical architectures, with the same parameters for

the the same number of Epochs (see Table B.1 for details). We use either a constant
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CIFAR10 ImageNet-32 ImageNet-64 ImageNet-128

Channels 256 256 192 256

Depth 2 3 3 3

Channels multiple 1,2,2,2 1,2,2,2 1,2,3,4 1,1,2,3,4

Heads 4 4 4 4

Heads Channels 64 64 64 64

Attention resolution 16 16,8 32,16,8 32,16,8

Dropout 0.0 0.0 0.0 0.0

Effective Batch size 256 1024 2048 1536

GPUs 2 4 16 32

Epochs 1000 200 250 571

Iterations 391k 250k 157k 500k

Learning Rate 5e-4 1e-4 1e-4 1e-4

Learning Rate Scheduler Polynomial Decay Polynomial Decay Constant Polynomial Decay

Warmup Steps 45k 20k - 20k

Table B.1: Hyper-parameters used for training each model

learning rate schedule or a polynomial decay schedule (see Table B.1). The polynomial

decay learning rate schedule includes a warm-up phase for a specified number of training

steps. In the warm-up phase, the learning rate is linearly increased from 1e−8 to the peak

learning rate (specified in Table B.1). Once the peak learning rate is achieved, it linearly

decays the learning rate down to 1e−8 until the final training step.

When reporting negative log-likelihood, we dequantize using the standard uniform

dequantization. We report an importance-weighted estimate using

log
1

K

K∑
k=1

pt(x+ uk), where uk ∼ U(0, 1), (B.11)

with x is in {0, . . . , 255} and solved at t = 1 with an adaptive step size solver dopri5 with

atol=rtol=1e-5 using the torchdiffeq [Che18] library. Estimated values for different

values of K are in Table B.2.

When computing FID/Inception scores for CIFAR10, ImageNet-32/64 we use the Ten-

sorFlow GAN library 1. To remain comparable to [DN21] for ImageNet-128 we use the

evaluation script they include in their publicly available code repository 2.

1https://github.com/tensorflow/gan
2https://github.com/openai/guided-diffusion

https://github.com/tensorflow/gan
https://github.com/openai/guided-diffusion
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B.2.3 Additional tables and figures
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Epochs
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Figure B.3: Function evaluations for sampling during training, for models trained on CIFAR-10
using dopri5 solver with tolerance 1e−5.

CIFAR-10 ImageNet 32×32 ImageNet 64×64

Model K=1 K=20 K=50 K=1 K=5 K=15 K=1 K=5 K=10

Ablation

DDPM 3.24 3.14 3.12 3.62 3.57 3.54 3.36 3.33 3.32

Score Matching 3.28 3.18 3.16 3.65 3.59 3.57 3.43 3.41 3.40

ScoreFlow 3.21 3.11 3.09 3.63 3.57 3.55 3.39 3.37 3.36

Ours

FM w/ Diffusion 3.23 3.13 3.10 3.64 3.58 3.56 3.37 3.34 3.33

FM w/ OT 3.11 3.01 2.99 3.62 3.56 3.53 3.35 3.33 3.31

Table B.2: Negative log-likelihood (↓, in bits per dimension) on the test set with different values
of K using uniform dequantization.
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Figure B.4: Non-curated unconditional ImageNet-32 generated images of a CNF trained with FM-
OT.
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Figure B.5: Non-curated unconditional ImageNet-64 generated images of a CNF trained with FM-
OT.
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Figure B.6: Non-curated unconditional ImageNet-128 generated images of a CNF trained with
FM-OT.
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Figure B.7: Conditional generation 64×64→256×256. Flow Matching OT upsampled images from
validation set.
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Figure B.8: Conditional generation 64×64→256×256. Flow Matching OT upsampled images from
validation set.
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B.3 Additions for Chapter 5

B.3.1 Coupling algorithms

Multisample FM makes use of batch coupling algorithms to construct an implicit joint

distribution satisfying the marginal constraints. While BatchOT coupling is motivated

by approximating the OT map, we consider other lower complexity coupling algorithms

which produce coupling that satisfy some desired property of optimal couplings. In Table

B.3 we summarize the runtime complexities for the different algorithms used in this work.

We will now describe in detail the Stable and Heuristic coupling algorithms.

Table B.3: Runtime complexities of the different coupling algorithms as a function of the batch
size k.

CondOT BatchOT BatchEOT Stable Heuristic

Runtime Complexity O(1) O(k3) Õ(k2/ϵ) O(k2 log(k)) O(k2 log(k))

Stable couplings

[Wol20] surveys discrete optimal transport from a stable coupling perspective proving

that stability is a necessary condition for OT couplings. Although stable couplings are

not OT, they are cheaper to compute and are therefore an appealing approach to pursue.

For completeness we formulate the Gale Shapely Algorithm in our setting in Algorithm

2. The rankings R0, R1 hold the preferences of the samples in {x(i)0 }ki=1 and {x(i)1 }ki=1

respectively. Where R0(i, j) is the rank of x
(j)
1 in x

(i)
0 ’s preferences and R1(i, j) is the rank

of x
(j)
0 in x

(i)
1 ’s preferences.

Algorithm 2 Stable Coupling (Gale Shapely)

input : {x(i)0 }ki=1 ∼ q0(x0), {x
(i)
1 }ki=1 ∼ q1(x1), rankings R0, R1

initialization: σ empty assignment

while ∃ i ∈ [k] s.t. σ(i) is empty do

j ← first sample in R0(i, ·) whom x
(i)
0 has not tried to match with yet

if ∃ i′ s.t. σ(i′) = j then

if R1(j, i) < R1(j, i
′) then

σ(i′)← empty

σ(i)← j

end

else
σ(i)← j

end

end

output: assignment σ
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Heuristic couplings

The stable coupling is agnostic to the cost of pairing samples and only takes into account

the ranks. Therefore, reassignments during the Gale Shapely algorithms might increase

the total cost although the rankings of assigned samples are improved. We draw inspi-

ration from the cyclic monotonicity of OT couplings [Vil08] and from the marriage with

sharing formulation in [Wol20] and modify the reassignment condition in the Gale Shapely

algorithm (see Algorithm 3). The modified condition encourages ”local” monotonicity be-

tween the reassigned pairs only, reassigning a pair only if the potentially newly assigned

pairs have a lower cost.

Algorithm 3 Heuristic Coupling

input : {x(i)0 }ki=1 ∼ q0(x0), {x
(i)
1 }ki=1 ∼ q1(x1), rankings R0, R1, cost matrix C

initialization: σ empty assignment
while ∃ i ∈ [k] s.t. σ(i) is empty do

j ← first sample in R0(i, ·) whom x
(i)
0 has not tried to match with yet

if ∃ i′ s.t. σ(i′) = j then

j′ ← first sample in R0(i
′, ·) whom x

(i′)
0 has not tried to match with yet

l← second sample in R0(i, ·) whom x
(i)
0 has not tried to match with yet

if C(i, j) + C(i′, j′) < C(i, l) + C(i′, j) then
σ(i′)← empty
σ(i)← j

end

else
σ(i)← j

end

end
output: assignment σ

B.3.2 Experimental & evaluation details

Image datasets

We report the hyper-parameters used in Table B.4. We use the architecture from [DN21]

but with much lower attention resolution. We use full 32 bit-precision for training ImageNet-

32 and 16-bit mixed precision for training ImageNet-64. All models are trained using the

Adam optimizer with the following parameters: β1 = 0.9, β2 = 0.999, weight decay =

0.0, and ϵ = 1e−8. All methods we trained using identical architectures, with the same

parameters for the the same number of epochs (see Table B.4 for details), with the excep-

tion of Rectified Flow, which we trained for much longer starting from the fully trained

CondOT model. We use either a constant learning rate schedule or a polynomial decay

schedule (see Table B.4). The polynomial decay learning rate schedule includes a warm-up

phase for a specified number of training steps. In the warm-up phase, the learning rate is

linearly increased from 1e−8 to the peak learning rate (specified in Table B.4). Once the

peak learning rate is achieved, it linearly decays the learning rate down to 1e−8 until the

final training step.
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When reporting negative log-likelihood, we dequantize using the standard uniform

dequantization [DSB17]. We report an importance-weighted estimate using

BPD(K) = − 1

D
log2

1

K

K∑
k=1

pt(x+ uk), where uk ∼ [U(0, 1)]D, (B.12)

with x is in {0, . . . , 255}D. We solve for pt at exactly t = 1 with an adaptive step size

solver dopri5 with atol=rtol=1e-5 using the torchdiffeq [Che18] library. We used

K=15 for ImageNet32 and K=10 for ImageNet64.

When computing FID, we use the TensorFlow-GAN library https://github.com/

tensorflow/gan.

We run coupling algorithms only within each GPU. We also ran coupling algorithms

across all GPUs (using the “Effective Batch Size”) in preliminary experiments, but did not

see noticeable gains in sample efficiency while obtaining slightly worse performance and

sample quality, so we stuck to the smaller batch sizes for running our coupling algorithms.

For Rectified Flow, we use the finalized FM-CondOT model, generate 50000 noise and

sample pairs, then train using the same FM-CondOT algorithm and hyperparameters on

these sampled pairs. This is equivalent to their 2-Rectified Flow approach [LGL23]. For

the rectification process, we train for 300 epochs.

Table B.4: Hyper-parameters used for training each model.

ImageNet-32 ImageNet-64

Channels 256 192

Depth 3 3

Channels multiple 1,2,2,2 1,2,3,4

Heads 4 4

Heads Channels 64 64

Attention resolution 4 8

Dropout 0.0 0.1

Batch size / GPU 256 50

GPUs 4 16

Effective Batch size 1024 800

Epochs 350 575

Effective Iterations 438k 957k

Learning Rate 1e-4 1e-4

Learning Rate Scheduler Polynomial Decay Constant

Warmup Steps 20k -

https://github.com/tensorflow/gan
https://github.com/tensorflow/gan
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B.3.3 Additional tables and figures

Runtime per iteration is not significantly affected by solving for couplings

Table B.5: Absolute and relative runtime comparisons between CondOT, BatchOT and Stable
matching. “It./s” denotes the number of iterations per second, and “Rel. increase” is the relative
increase with respect to CondOT. Note that these are on relatively standard batch sizes (refer to
§B.3.2 for exact batch sizes).

ImageNet 32×32 ImageNet 64×64
It./s Rel. increase It./s Rel. increase

CondOT (reference) 1.16 — 1.31 —

BatchOT 1.15 0.8% 1.26 3.9%

Stable 1.15 0.8% 1.26 3.9%

How batch size affects the marginal probability paths on 2D checkerboard data
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Figure B.9: Marginal probability paths. (Top) Batch size 64. (Bottom) Batch size 8.
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Full results on ImageNet data

Table B.6: Multisample Flow Matching improves on sample quality and sample efficiency while
not trading off performance at all compared to Flow Matching. †Reproduction using the same
training hyperparameters (architecture, optimizer, training iterations) as our methods.

ImageNet 32×32 ImageNet 64×64

Model NLL FID NFE Var(ut) NLL FID NFE Var(ut)

Ablations†

DDPM [HJA20] 3.61 5.72 330 3.27 13.80 323

ScoreSDE [Son+21b] 3.61 6.84 198 3.30 26.64 365

ScoreFlow [Son+21a] 3.61 9.53 189 3.34 32.78 554

Flow Matching w/ Diffusion [Lip+23] 3.60 6.36 165 3.35 15.11 162

Rectified Flow [LGL23] 3.59 5.55 111 3.31 13.02 129

Flow Matching w/ CondOT [Lip+23] 3.58 5.04 139 594 3.27 13.93 131 1880

Ours

Multisample Flow Matching w/ StableCoupling 3.59 5.79 148 523 3.27 11.82 132 1782

Multisample Flow Matching w/ HeuristicCoupling 3.58 5.29 133 555 3.26 13.37 110 1816

Multisample Flow Matching w/ BatchEOT 3.58 6.14 132 508 3.26 14.92 141 1736

Multisample Flow Matching w/ BatchOT 3.58 4.68 146 507 3.27 12.37 135 1733

FID vs NFE using midpoint discretization scheme
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Figure B.10: Sample quality (FID) vs compute cost (NFE); midpoint discretization.
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Comparison of FID vs NFE for baseline methods DDPM and ScoreSDE

Table B.7: Comparing the FID vs. NFE on ImageNet32 for two baselines and two of our methods.

ImageNet32 FID (Euler)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79

40 19.56 16.96 5.94 7.02

20 63.08 58.02 7.71 8.66

12 152.59 140.95 10.72 11.10

8 232.97 218.66 15.64 14.89

6 275.28 266.76 22.08 19.88

4 362.37 340.17 38.86 33.92

ImageNet32 FID (Midpoint)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79

40 6.68 6.48 5.09 5.94

20 7.80 8.96 5.98 6.57

12 14.87 16.22 7.18 7.84

8 56.41 56.73 8.73 9.99

6 188.08 168.99 10.71 12.98

4 319.41 279.06 17.28 21.82

Table B.8: Comparing the FID vs. NFE on ImageNet64 for two baselines and two of our methods.

ImageNet64 FID (Euler)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82

40 25.83 44.16 14.79 13.39

20 66.42 82.97 17.06 15.15

12 158.46 141.79 20.94 18.81

8 258.49 210.29 27.56 26.38

6 321.04 262.20 36.17 37.14

4 373.08 335.54 56.75 63.25

ImageNet64 FID (Midpoint)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82

40 15.3 26.67 14.22 12.97

20 15.05 25.73 16.05 14.76

12 18.91 29.99 18.27 17.60

8 53.15 67.83 20.85 21.36

6 179.79 155.91 24.87 27.15

4 330.53 279.00 38.45 46.08

Convergence improves when using larger coupling sizes
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Figure B.11: Larger couplings sizes (k) for defining the multisample coupling results in faster and
more stable convergence. This is done on the 64-D experiments in §5.6.3. The batch size (number
of samples) for training is kept thestr same and only k is varied for solving the couplings.
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B.3.4 Generated samples

Figure B.12: Non-curated generated images for ImageNet64 using Multisample Flow Matching
with BatchOT coupling.
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B.4 Additions for Chapter 6

B.4.1 Implementation details

Linear Inverse Problems on Images

Optimization details. For all experiments in this section, we used the LBFGS opti-

mizer with 20 inner iterations for each optimization step with line search. The stopping

criterion was set by a target PSNR value, varying for different tasks. The solver used

was midpoint with 6 function evaluations. The losses, regularizations, initializations, and

stopping criteria of our algorithm for the linear inverse problems are listed in Table B.9.

In the Table χd regularization corresponds to equation 6.10 and λ denotes the coefficients

used.

Table B.9: Algorithmic choices for the ImageNet-128 linear inverse problems tasks.

Inpainting-Center Super-Resolution X2 Gaussian Deblur

σy = 0 σy = 0.05 σy = 0 σy = 0.05 σy = 0 σy = 0.05

Loss −PSNR(Hx, y) −PSNR(Hx, y) −PSNR(H†Hx,H†y) −PSNR(Hx, y)

Regularization None χd, with λ = 0.01 None χd, with λ = 0.01 None χd, with λ = 0.01

Initialization 0.1 blend 0.1 blend 0.1 blend

Target PSNR 45 32 55 32 55 32

Runtimes. For noiseless tasks: inpainting center crop took on avarage 10 minutes per

image, super resolution took 12.5 minutes per image and Gaussian deblurring took 15.5

minutes per image. For the noisy tasks: inpainting center crop took on avarage 4 minutes

per image, super resolution took 2.5 minute per image and Gaussian deblurring took 3.5

minutes per image. Experiments ran on 32GB NVIDIA V100 GPU.

Metrics are computed using the open source TorchMetrics library [Det+22].

RED-Diff baseline. To use the RED-Diff baseline with a FM cond-OT trained model

we transform the velocity field to epsilon prediction according to A.91. We searched for

working parameters and reported results that outperformed the results that were pro-

duced by [Pok+23] with an epsilon prediction model, otherwise we kept the number from

[Pok+23].

Inpainting with Latent Flow Models

Image inpainting

Optimization details. In this experiment, we used the LBFGS optimizer with 20 inner

iterations for each optimization step with line search. The stopping criterion was set by

a runtime limit of 30 minutes, but optimization usually convergences before. The solver

used was midpoint with 6 function evaluations and the loss was negative PSNR without

regularization. We initialized the algorithm with a backward blend with α = 0.25. To
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facilitate the backpropagation through a large T2I model, we use gradient checkpointing.

The validation set of the COCO dataset, used for evaluation, was downloaded from

http://images.cocodataset.org/zips/val2017.zip.

RED-Diff baseline. To adapt RED-Diff to a latent space diffusion model, let us recall

the loss used in RED-Diff:

ℓ(µ) = ∥y − f(µ)∥2 + λt(sg [ϵ(x(t), t)− ϵ])Tµ (B.13)

where f can be any differentiable function. In the latent diffusion/flow model for inverse

problems, we can model f as f = H(decode(µ)), where decode applies the decoder of the

autoencoder used in the latent diffusion/flow model and H is the corruption operator. We

use lr = 0.25, λ = 0.25.

Audio inpainting

Optimization details. We follow the same setup described in B.4.1. Differently, we

use 10 inner iterations and stop after 100 global iterations. We initialize the algorithm

with a backward blend with α = 0.1.

RED-Diff baseline. We follow the same adaptation described above in B.4.1. We use

lr = 0.05, λ = 0.5.

Conditional Molecule Generation on QM9

Optimization details. In this section, we describe how Algorithm 1 was practically

applied in the QM9 experiment. We initialized x0 ∈ Rn×9 for the experiment, where n

represents the molecule’s atom count and 9 the number of attributes per atom, using a

standard Gaussian distribution. To enhance optimization process stability, we ensured x0

had a feature-wise mean of zero and a standard deviation of one by normalizing it after

every optimization step. We employed the midpoint method for the ode solver, with a

total of 100 function evaluations, i.e.step size of 1/50. The optimization technique utilized

was LBFGS with line search, configured with 5 optimization steps and a limit of 5 inner

iterations for each step. The learning rate was set to 1. On average, generating a single

molecule took approximately 2.5 minutes using a single NVIDIA Quadro RTX8000 GPU.

Table B.10: Comparison of generated molecules quality using different solvers and D-Flow.

Sample Method
NFE

(#)

Molecule Stability

(%)

Atom Stability

(%)

Validity

(%)

Validity & Uniqueness

(%)

Dopri5 Adaptive Solver - 72.03 96.14 85.00 83.84

Midpoint (50 steps) 100 72.10 96.18 85.56 84.39

Midpoint (50 steps) + optimization 100 58.97 93.87 79.38 79.38
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In Table B.11 below, we report MAE values over the split to stable and non-stable

molecules within the 10k generated samples. Other baselines and the result denoted as

’Ours’ in the table report MAE on the entire 10k set of molecules without distinguishing

between stable and non-stable ones. Since our method produces lower stability percentage,

we also report the MAE on the stable and non-stable splits. It can be seen that our

improved MAE performance is not due to producing non-stable molecules with lower

MAE, but performance is also SOTA on generated stable molecules.

Table B.11: Quantitative evaluation of conditional molecule generation. Values reported in the
table are MAE (over 10K samples) for molecule property predictions (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr2 meV meV meV D cal
molK

QM9∗ 0.10 64 39 36 0.043 0.040

EDM 2.76 655 356 584 1.111 1.101

EQUIFM 2.41 591 337 530 1.106 1.033

GEOLDM 2.37 587 340 522 1.108 1.025

Ours 1.39 344 182 330 0.300 0.784

Ours-stable 1.40 347 180 337 0.287 0.835

Ours-non stable 1.38 340 186 318 0.321 0.714

QM9. The QM9 dataset [Ram+14], a widely recognized collection, encompasses

molecular characteristics and atomic positions for 130K small molecules, each containing

no more than 9 heavy atoms (up to 29 atoms when including hydrogens). The train/-

validation/test partitions used are according to [AHK19] and consists of 100K/18K/13

samples per partition. We provide additional details regarding the properties used in the

experiment:

• α Polarizabilty - Tendency of a molecule to acquire an electric dipole moment when

subjected to an external electric field.

• εHOMO - Highest occupied molecular energy.

• εLUMO - Lowest unoccupied molecular energy.

• ∆ε - The difference between HOMO and LUMO.

• µ - Dipole moment.

• Cv - Heat capacity at 298.15K.

B.4.2 Additional Experiment: Image Denoising

In this experiment, we consider the task of denoising. The corrupted signal, y, is given by

y = x+ ϵ, ϵ ∼ N (0, σyI), with σy = 0.05. Hyperparameters are the same as in Table B.9

for the noisy experiments. Reported metrics are in Table B.12.
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Table B.12: Quantitative evaluation of denoising inverse problem on face-blurred ImageNet-128.

Denoising

Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
σy = 0.05

ΠGDM [Son+23a] 9.60 0.107 35.11 0.903

OT-ODE [Pok+23] 3.14 0.062 37.34 0.964

RED-Diff [Mar+23] 9.19 0.105 32.52 0.895

Ours 2.83 0.060 36.05 0.952

B.4.3 Ablation: Regularization Coefficient

As reported in Table B.9, on the tasks of linear inverse problems on images, we used the

source point χd regularization, equation 6.10, for the noisy case. In the plot below, B.13,

we report the evaluation metrics (FID, LPIPS, PSNR, SSIM) for varying regularization

coefficient values, λ, on the task of noisy super-resolution. All other hyperparameters are

as reported in Table B.9.

Figure B.13: Evaluation metrics vs. regularization coefficient λ of χd regularization over x0 for
noisy super-resolution on ace-blurred ImageNet-128.
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B.4.4 Additional Qualitative Results

Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM

Figure B.14: Qualitative comparison for linear inverse problems on ImageNet-128 for the noiseless
case. GT samples come from the face-blurred ImageNet-128 validation set.
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Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM

Figure B.15: Qualitative comparison for linear inverse problems on ImageNet-128 for the noisy
case. GT samples come from the face-blurred ImageNet-128 validation set.
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Distorted Ground Truth Ours RED-Diff

Figure B.16: Qualitative comparison for free-form inpainting on the MS-COCO dataset using a
T2I latent FM model. GT samples come from the MS-COCO validation set.
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