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Introduction

Simulation‐free continuous‐time generative models have achieved state of the art perfor‐
mance across various data modalities. Although showing high sample quality, these models
require a costly sampling procedure consisting of many function evaluations. Recently,
[1] proposed the Flow Matching framework for training continuous normalizing flows in a
simulation‐free manner and introduced the conditional optimal transport (OT) probability
paths, which improved sampling speed compared to diffusion paths.

Goals

Extend the Flow Matching framework for general joint distributions, q(x0, x1).
Find joint distributions q(x0, x1) that simplify ODE trajectories — faster sampling.

D
iff
us
io
n

C
on
dO
T

O
ur
s

Figure 1. Probability paths (left) and sampling with limited NFE (right). Ours ran with BatchOT couplings.

Preliminaries

Continuous Normalizing Flow (CNF). A time‐dependent diffeomorphic map, ψ : [0, 1] ×
Rd → Rd, parameterized by the vector field ut(x) and defined via the ordinary differential
equation:

d

dt
ψt(x0) = ut(ψt(x0)) , ψ0(x0) = x0 . (1)

A CNF induces a continuous transformation between probability densities defined by the
push‐forward pt = ψt∗q0 where in generative modeling we seek to approximate some target
distribution q1, that is, we want: p1 ≈ q1.

Flow Matching. A simulation‐free method to train CNFs. The core idea is to implicitly
construct a probability path, pt(x), between the source distribution q0 and the target distri‐
bution q1 using a conditional probability path that is easy to sample from:

pt(x) =
∫
pt(x|x1)q1(x1)dx1, p0(x|x1) = q0(x), p1(x|x1) = δ(x− x1),

The marginal vector field, ut(x), generating pt(x) is the minimizer of the Conditional Flow
Matching loss:

LCFM = Et,q0(x0),q1(x1) ∥vt(xt; θ) − ut(xt|x1)∥2 ,

where ut(x|x1) is the conditional vector field generating pt(x|x1), and xt = ψt(x0|x1) is the
corresponding conditional transport map. In particular, [1] proposes an OT inspired condi‐
tional path called CondOT for which ut(x|x1) = x1 − x0.

x0 ∼ q0 x1 ∼ q1
xt = (1 − t)x0 + tx1CondOT:

Figure 2. Conditional probability path samples xt for the CondOT path.

tl;dr

1. Multisample FM extends the family of probability paths used for simulation‐free
training of CNFs.

2. Using minibatch solutions of optimal transport, we achieve:
Faster convergence during training.
Faster sampling.

3. First work capable of utilizing minibatch optimal transport couplings to produce a
marginal preserving map between distributions.

Multisample Flow Matching

Joint Flow Matching. We show that for a joint distribution q(x0, x1) satisfying:

∫
q(x0, x1)dx1 = q0(x0),

∫
q(x0, x1)dx0 = q1(x1),

minimizing the Joint Conditional Flow Matching loss

LJCFM = Et,q(x0,x1) ∥vt(xt; θ) − ut(xt|x1)∥2 ,

yields the marginal vector field, ut(x), that pushes q0 to q1, similarly to the CFM objective.

Multisample FlowMatching. The JCFM loss adds another degree of freedom in the design
space of probability paths. However, it is non‐trivial to construct such joint distributions
satisfying the marginals. We propose a constructive approach towards this goal, called
Multisample Flow Matching.
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Figure 3. The Multisample Flow Matching Algorithm. We randomly sample noise and data samples, then
re‐arrange the pairing to be either optimal, or stable, within the current minibatch.

Batch Optimal Transport Couplings

Optimal Transport.

W 2
2 (q0, q1) = min

q∈Γ(q0,q1)
Eq(x0,x1)[∥x0 − x1∥2]︸ ︷︷ ︸

Static Cost

= min
pt,ut

∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x)dxdt︸ ︷︷ ︸
Dynamic Cost

,

Aiming to simplify the ODE trajectories of the marginal vector field, we propose to use
minibatch OT couplings, denoted as BatchOT, to construct π(i, j).

Theorem (informal). Suppose that Multisample Flow Matching is run with BatchOT. Then,
as k → ∞,

1. The value of the JCFM objective for the optimal ut converges to 0.
2. A straightness measure, S, of the optimal ut converges to zero.
3. The static cost associated to the optimal ut is monotonically decreasing and converges
to the OT costW 2

2 (p0, p1).

CondOT BatchOT BatchEOT Stable Heuristic
Runtime Complexity O(1) O(k3) Õ(k2/ϵ) O(k2 log(k)) O(k2 log(k))

Table 1. Runtime complexities of the alternative coupling algorithms as a function of the batch size k.

Experiments

We experiment with large‐scale image datasets ImageNet32 and ImageNet64. We show
two main contributions: (i) faster convergence at training and (ii) better image quality at
fixed compute budgets, measured using number of function evaluations (NFEs).

Faster Convergence and Sampling.
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Figure 4. Multisample Flow Matching with
BatchOT shows faster convergence on
(ImageNet64).

ImageNet 32×32 ImageNet 64×64
NFE @ FID = 10 NFE @ FID = 20

Diffusion ≥40 ≥40
FM w/ CondOT 20 29
MultisampleFM w/ Heuristic 18 12
MultisampleFM w/ Stable 14 11
MultisampleFM w/ BatchOT 14 12

Table 2. NFE required to achieve a certain FID across our
proposed methods. The baseline diffusion‐based methods
(e.g., ScoreFlow and DDPM) require more than 40 NFE to
achieve these FID values. Surprisingly, our Stable
couplings performs on par with BatchOT couplings at
lower compute.
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Figure 5. Multisample Flow Matching trained with
BatchOT couplings produces more consistent samples
across varying NFEs. Note that both flows on each
row start from the same noise sample (ImageNet64).

Figure 6. Non‐curated samples from a
model trained on ImageNet64.

Transport Cost vs. Batch Size
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Figure 7. Flow Matching reduces the transport cost further, compared to minibatch OT solutions. Ablation
on the static transport cost as a function of the batch size k in a synthetic setting in R64. Blue: cost of
minibatch OT solutions, Orange: cost of trained flow with BatchOT multisample FM.
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